Advertisement

Applied Magnetic Resonance

, Volume 13, Issue 3–4, pp 439–457 | Cite as

ENDOR amplitudes of triplet state molecules: I. Electric-circuit analogy treatment

  • A. A. Doubinskii
  • Ya. S. Lebedev
  • K. Möbius
Article

Abstract

ENDOR spectra of triplet state molecules have a chacteristic line from degenerate NMR transitions within the zero level (ZL) electron spin manifoldM S=0. The ZL line, observed at the free nuclear Larmor frequency, dominates spectra when the number of nuclei is large. This line was found to be substantially reduced in intensity at low temperature. The strong variation of the ZL line intensity is analyzed within the frame of an electric-circuit analogy modeling. The result is as follows: At low temperature the electron and nuclear spin-lattice relaxation rates become small, and the nuclear-nuclear spin flip-flop transitions between degenerate substates,M I=const within the ZL manifold, become relatively strong to compete for population redistribution. This reduces the population differences between nuclear sublevels. Additional NMR irradiation can thus do very little to reduce these differences even more, and the ENDOR effect becomes suppressed. A certain enhancement of the relaxationally suppressed ZL line occurring at increased EPR saturation is explained by the coherent action of the microwave field on the selected substate within the ZL manifold that shifts its energy out of the other degenerate states thereby closing the flip-flop relaxation channel.

Keywords

Manifold Relaxation Transition ENDOR Spectrum ENDOR Line Triplet Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Freed J.H. in: Multiple Electron Resonance Spectroscopy (Dorio M.M., Freed J.H., eds.), chap. 3. New York: Plenum Press 1979; Brustolon M., Segre U. in: Advanced EPR. Applications in Biology and Biochemistry (Hoff A.J., ed.), p. 593. Amsterdam: Elsevier 1989.Google Scholar
  2. [2]
    Möbius K., Biehl R. in: Multiple Electron Resonance Spectroscopy (Dorio M.M., Freed J.H., eds.), chap. 14. New York: Plenum Press 1979; Kurreck H., Kirste B., Lubitz W.: Electron Nuclear Double Resonance Spectroscopy of Radicals in Solution, p. 47. Weinheim: VCH 1988.Google Scholar
  3. [3]
    Chemerisov S.D., Perekhodtsev G.D., Tipikin D.S., Lebedev Ya.S., Prokof’ev A.I., Aleksandrov A.I., Dubinskii A.A., Möbius K., Poluektov O.G., Schmidt J.: J. Chem. Soc. Farad. Trans.9, 1959 (1996)CrossRefGoogle Scholar
  4. [4]
    Van Willigen H., Plato M., Möbius K., Dinse K.-P., Kurrek H., Reusch J.: Mol. Phys.30, 1359 (1975)CrossRefADSGoogle Scholar
  5. [5]
    Goncalves A.M.-P., Hutchison C.A.: J. Chem. Phys.49, 4235 (1968)CrossRefADSGoogle Scholar
  6. [6]
    Lendzian F., van Willigen H., Sastry S., Möbius K., Scheer H., Feick R.: Chem. Phys. Lett.118, 145 (1985)CrossRefADSGoogle Scholar
  7. [7]
    Hutchison C.A., Pearson G.A.: J. Chem. Phys.47, 520 (1967)CrossRefADSGoogle Scholar
  8. [8]
    Ehret P., Wolf H.C.: Z. Naturforsch. A23, 1740 (1968)Google Scholar
  9. [9]
    Prokof’ev A.I., Malysheva N.A., Bubnov N.N., Solodovnikov S.P., Kabachnik M.I., Dokl. Akad. Nauk (in Russian)245, 1123 (1979);ibid. Dokl. Akad. Nauk (in Russian),252, 370 (1980)Google Scholar
  10. [10]
    Möbius K., Plato M., Lubitz W.: Phys. Rev.87, 172 (1992)Google Scholar
  11. [11]
    Ozarowski A., McGarvey B.R., Peppe C., Tuck D.G.: J. Am. Chem. Soc.113, 3288 (1991)CrossRefGoogle Scholar
  12. [12]
    Lange C.W., Conklin B.J., Pierpont C.G.: Inorg. Chem.33, 1276 (1994)CrossRefGoogle Scholar
  13. [13]
    Doubinski A.A., Lebedev Ya.S., Salikhov K.M., Möbius K.: Appl. Magn. Reson.13, 459 (1997)CrossRefGoogle Scholar
  14. [14]
    Carrington A., McLachlan A.D.: Introduction to Magnetic Resonance, p. 181. New York: Harper & Row 1969.Google Scholar
  15. [15]
    Bloch F.: Phys. Rev.102, 104 (1956)MATHCrossRefADSGoogle Scholar
  16. [16]
    Carrington A., McLachlan A.D.: Introduction to Magnetic Resonance, p. 8. New York: Harper & Row 1969.Google Scholar
  17. [17]
    Abragam A.: The Principles of Nuclear Magnetism, chap. XII. Oxford: Oxford University Press 1961.Google Scholar
  18. [18]
    Möbius K., Biehl R. in: Multiple Electron Resonance Spectroscopy (Dorio M.M., Freed J.H., eds.), chap. 14, p. 490. New York: Plenum Press 1979.Google Scholar
  19. [19]
    Van der Waals J.H., van Dorp W.G., Schaafsma T.J. in: The Porphyrins (Dolphin D., ed.), p. 293. New York: Academic Press 1979.Google Scholar

Copyright information

© Springer 1997

Authors and Affiliations

  • A. A. Doubinskii
    • 1
  • Ya. S. Lebedev
    • 1
  • K. Möbius
    • 2
  1. 1.Institute of Chemical PhysicsMoscowRussian Federation
  2. 2.Institute for Experimental PhysicsFree University of BerlinBerlinGermany

Personalised recommendations