Applied Magnetic Resonance

, Volume 17, Issue 2–3, pp 243–263 | Cite as

Two-dimensional2H NMR exchange spectroscopy on conducting ionic crystals

  • J. Totz
  • D. Michel
  • Yu. N. Ivanov
  • I. P. Aleksandrova
  • J. Petersson
  • A. Klöpperpieper


The two-dimensional (2-D) deuterium nuclear magnetic resonance (NMR) exchange spectroscopy is applied to two types of conducting ionic crystals for the study of hydrogen mobility and conductivity, viz. partially deuterated ammonium hydrogen selenate, NH4HSO4 (AHSe), and partially deuterated mixed crystals of betaine phosphate (DBP) and betaine phosphite (DBPI), DBP1−x DBPIx. In both crystals chemical exchange processes of deuterons between different hydrogen bridges occur which are studied by the 2-D-2H-NMR technique over a wide temperature range in the slow-exchange regime. For AHSe exchange only occurs between two sites which are involved in hydrogen bonds. Two Arrhenius-like exchange processes were found the activation energies of which could be determined. For the case of DBP1−x DBPIx, with several deuteron sites taking part in the exchange, the analysis of the quantitative exchange behavior required a combination of time-domain analysis of our 2-D NMR data with mixing-time- and temperature-dependent measurements. Different exchange rates for each two-site exchange, all showing Arrhenius behavior, were obtained for DBP0.3, DBPI0.7. For crystals with different phosphite concentrationx the differences towards DBP0.3, DBPI0.3 were established. With the help of conductivity data from dielectric measurements quantitative relations between the exchange and conductivity processes are obtained for AHSe as well as for DBP1−x DBPIx. Finally, an estimation of effective charge carrier densities is discussed in view of possible conductivity models for both crystals.


Nuclear Magnetic Resonance Exchange Rate Nuclear Magnetic Resonance Spectroscopy Ionic Crystal Charge Carrier Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moskvich Yu.N., Sukhovsky A.A., Rozanov O.V.: Fiz. Tverd. Tela26, 38 (1984)Google Scholar
  2. 2.
    Blinc R., Dolinsek J., Lahajnar G., Zupancic I., Shuvalov L.A., Baranov A.I.: Phys. Status Solidi B83, K123 (1984)CrossRefGoogle Scholar
  3. 3.
    Baranov A.I., Fedosyuk R.M., Schagina N.M., Shuvalov L.A.: Ferroelectrics Lett.2, 25 (1984)CrossRefGoogle Scholar
  4. 4.
    Hutton S.L., Fehst I., Böhmer R., Braune M., Mertz B., Lunkenheimer P., Loidl A.: Phys. Rev. Lett.66, (1991)Google Scholar
  5. 5.
    Ries H., Böhmer R., Fehst I., Loidl A.: Z. Phys. B99, 401 (1996)CrossRefADSGoogle Scholar
  6. 6.
    Aleksandrova I.P., Rozanov O.V., Sukhovsky A.A., Moskvich Yu.N.: Phys. Lett. A95, 339 (1983)CrossRefADSGoogle Scholar
  7. 7.
    Aleksandrov K.S., Kruglik A.I., Misyul S.V., Simonov M.A.: Kristallografiya25, 1142 (1980)Google Scholar
  8. 8.
    Aleksandrova I.P., Moskvich Yu.N., Rozanov O.V., Sadreev A.F., Seryukova I.V., Sukhovsky A.A.: Ferroelectrics67, 63 (1986)Google Scholar
  9. 9.
    Ivanov Yu.N., Totz J., Michel D., Klotzsche G., Sukhovsky A.A., Aleksandrova I.P.: J. Phys.: Condens. Matter11, 3151 (1999)Google Scholar
  10. 10.
    Albers J., Klöpperpieper A., Rother H.J., Haussühl S.: Ferroelectrics81, 27 (1988)Google Scholar
  11. 11.
    Albers J., Klöpperpieper A., Rother H.J., Ehses K.H.: Phys. Status Solidi A74, 553 (1982)CrossRefGoogle Scholar
  12. 12.
    Schildkamp W., Spilker J.: Z. Kristallogr.168, 159 (1984)Google Scholar
  13. 13.
    Pöppl A., Völkel G., Metz H., Klöpperpieper A.: Phys. Status Solidi B184, 471 (1994)CrossRefGoogle Scholar
  14. 14.
    Santos M., Andrade L., Costa M., Chaves M., Almeida A., Klöpperpieper A., Albers J.: Phys. Status Solidi B199, 351 (1997)CrossRefADSGoogle Scholar
  15. 15.
    Bauch H., Böttcher R., Völkel G.: Phys. Status Solidi B179, K41 (1993)CrossRefGoogle Scholar
  16. 16.
    Freude P., Michel D.: Ferroelectrics165, 329 (1995)Google Scholar
  17. 17.
    Freude P., Michel D., Totz J., Klöpperpieper A.: Ferroelectrics208-209, 93 (1998)CrossRefGoogle Scholar
  18. 18.
    Freude P., Totz J., Michel D., Arndt M.: J. Phys.: Condens. Matter10, 429 (1998)CrossRefADSGoogle Scholar
  19. 19.
    Hemberger J., Ries H., Loidl A., Böhmer R.: Phys. Rev. Lett.76, 2330 (1996)CrossRefADSGoogle Scholar
  20. 20.
    Totz J., Braeter H., Michel D.: J. Phys.: Condens. Matter11, 1575 (1999)CrossRefADSGoogle Scholar
  21. 21.
    Totz J., Michel D., Banys J., Klöpperpieper A.: J. Phys.: Condens. Matter10, 9281 (1998)CrossRefADSGoogle Scholar
  22. 22.
    Dolinsek J., Zalar B., Blinc R.: Phys. Rev. B50, 805 (1994)CrossRefADSGoogle Scholar
  23. 23.
    Moskvich Yu.N., Rozanov O.V., Sukhovsky A.A., Aleksandrova I.P: Ferroelectrics63, 83 (1985)Google Scholar
  24. 24.
    Abragam A.: Principles of Nuclear Magnetism. Oxford: Oxford University Press 1961.Google Scholar
  25. 25.
    Kaufmann S., Wefing S., Schaefer D., Spiess H.W.: J. Chem. Phys.93 197 (1990)CrossRefADSGoogle Scholar
  26. 26.
    Müller A.: J. Magn. Reson.114, 238 (1995)CrossRefGoogle Scholar
  27. 27.
    Moskvich Yu.N., Polyakov A.M., Sukhovsky A.A.: Ferroelectrics81, 197 (1988)Google Scholar
  28. 28.
    O’Keeffe M., Perrino C.T.: J. Phys. Chem. Solids28, 211 (1967)CrossRefGoogle Scholar
  29. 29.
    Banys J., Klimm C., Völkel G., Böttcher R., Bauch H., Klöpperpieper A.: J. Phys.: Condens. Matter8, L681 (1996)CrossRefADSGoogle Scholar

Copyright information

© Springer 1999

Authors and Affiliations

  • J. Totz
    • 1
  • D. Michel
    • 1
  • Yu. N. Ivanov
    • 2
  • I. P. Aleksandrova
    • 2
  • J. Petersson
    • 3
  • A. Klöpperpieper
    • 3
  1. 1.Fakultät für Physik und GeowissenschaftenUniversität LeipzigLeipzigGermany
  2. 2.L.V. Kirensky Institute of PhysicsRussian Academy of ScienceKrasnoyarskRussian Federation
  3. 3.Fachbereich PhysikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations