Applied Magnetic Resonance

, Volume 9, Issue 2, pp 229–250 | Cite as

“Unusual” lines observed in low-frequency cw ENDOR of photoexcited triplet state molecules: the primary donor triplet in photosynthetic reaction centers as an example

  • A. A. Dubinskii
  • M. Huber
  • Yu. Grishin
  • K. Möbius


The origin of frequently observed “negative” (opposite phase) ENDOR lines in the low-frequency region of triplet state ENDOR spectra is explained in terms of microwave hole burning and RF modulation phenomena. From this, a new method of detecting burnt side holes in EPR spectra is derived which is based on cw ENDOR instrumentation. The method uses the modulation satellites that are induced by a longitudinal RF field component and appear around any EPR line, including burnt holes (“negative” lines). The longitudinal RF field was generated by a coil oriented parallel to the external field, but a longitudinal component of the RF field also exists in most conventional ENDOR spectrometers because of slight misalignments of the ENDOR coil generating the transversal RF field. The lines it induces in the low-frequency part of ENDOR spectra are generally considered as artifacts. It is shown, however, that RF induced modulation satellites provide valuable information concerning the lines distant from the spectral position in the EPR spectrum chosen for ENDOR observation. This allows one to record the pattern of side holes burnt by microwave saturation through forbidden transitions that carries information about ENDOR frequencies comparable to what can be extracted from ESEEM experiments. Such comparability is demonstrated for examples of nitrogen ENDOR of photoexcited triplet states of the primary donor in photosynthetic reaction centers and related compounds.


Radio Frequency ENDOR Spectrum Nuclear Transition ENDOR Line Modulation Satellite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Lendzian F., Van Willigen H., Sastry S., Möbius K., Scheer H., Feick R.: Chem. Phys. Lett.118, 145 (1985)CrossRefADSGoogle Scholar
  2. [2]
    Lendzian F.: private communication.Google Scholar
  3. [3]
    Feher G.: Phys. Rev.114, 1219 (1950)CrossRefADSGoogle Scholar
  4. [4]
    Bekauri P.I., Berulava B.G., Khakhanashvili O.G., Sanadze T.I.: Phys. Lett.24A, 156 (1957); Sanadze T.I., Khutsishvili G.R.: Soviet Physics JETP29, 248 (1969)ADSGoogle Scholar
  5. [5]
    Wacker T., Sierra G.A., Schweiger A.: Isr. J. Chem.32, 305 (1992)Google Scholar
  6. [6]
    Rosen D., Okamura M.Y., Feher G.: Biochemistry19, 5087 (1980)CrossRefGoogle Scholar
  7. [7]
    Hamacher V., Wrachtrup J., Von Maltzan B., Plato M., Möbius K.: Appl. Magn. Reson.4, 297 (1993)CrossRefGoogle Scholar
  8. [8]
    Biehl R., Lubitz W., Möbius K., Plato M.: J. Chem. Phys.66, 2074 (1977)CrossRefADSGoogle Scholar
  9. [9]
    Möbius K., Plato M., Lubitz W.: Phys. Rept.87, 172 (1982)CrossRefGoogle Scholar
  10. [10]
    Levanon H., Norris J.R.: Chem. Rev.78, 185 (1978); Thurnauer M.: Rev. Chem. Interm.3, 197 (1979)CrossRefGoogle Scholar
  11. [11]
    Singel D.J., Van der Poel W.A.J.A., Schmidt J., Van der Waals J.H., De Beer R.: J. Chem. Phys.81, 5453 (1984)CrossRefADSGoogle Scholar
  12. [12]
    Möbius K., Biehl R. in: Multiple Electron Resonance Spectroscopy (Dorio M.M., Freed J.H., eds.), p. 475. New York: Plenum Press 1979.Google Scholar
  13. [13]
    Atherton N.M., Blackhurst A.J., Cook I.P.: Chem. Phys. Lett.8, 187 (1971)CrossRefADSGoogle Scholar
  14. [14]
    Miyagawa I., Davidson R.B., Helms H.A., Wilkinson B.A.: J. Magn. Reson.10, 156 (1973)Google Scholar
  15. [15]
    Freed J.H. in: Multiple Electron Resonance Spectroscopy (Dorio M.M., Freed J.H., eds.) p.87. New York: Plenum Press 1979.Google Scholar
  16. [16]
    Koch P., Schweitzer D., Harms R.H., Keller H.J., Schaefer H., Helberg H.W., Wilckens R., Geserich H.P., Ruppel W.: Mol. Cryst. Liq. Cryst.86, 87 (1982)CrossRefGoogle Scholar
  17. [17]
    Anderson W.A.: Phys. Rev.102, 151 (1956)CrossRefADSGoogle Scholar
  18. [18]
    Dulcic A., Rakvin B.: J. Magn. Reson.52, 323 (1983)Google Scholar
  19. [19]
    Smaller B.: Phys. Rev.83, 812 (1951)CrossRefADSGoogle Scholar
  20. [20]
    Hyde J.S., Brown H.W.: J. Chem. Phys.37, 368 (1962)CrossRefADSGoogle Scholar
  21. [21]
    Hyde J.S.: J. Chem. Phys.43, 1806 (1965)CrossRefADSGoogle Scholar
  22. [22]
    Plato M.: Wiss. Ber. AEG-Telefunken41, 81 (1968)Google Scholar
  23. [23]
    Kevan L., Kispert L.D.: Electron Spin Double Resonance Spectroscopy, p. 112. New York: John Wiley 1976.Google Scholar
  24. [24]
    Seidel H., Mehring M., Stehlik D.: J. Chem. Phys.83, 956 (1985)CrossRefADSGoogle Scholar
  25. [25]
    Mims W.B. in: Electron Paramagnetic Resonance (Geschwind S., ed.), p. 263. New York: Plenum Press 1972.Google Scholar
  26. [26]
    De Groot A., Evelo R., Hoff A.J., De Beer R., Scheer H.: Chem. Phys. Lett.118, 48 (1985)CrossRefADSGoogle Scholar
  27. [27]
    Pinzino C.: J. Magn. Reson.81, 318 (1989)Google Scholar
  28. [28]
    Forte C., Pinzino C.: J. Magn. Reson.103, 203 (1993)CrossRefGoogle Scholar
  29. [29]
    Corvaja C.: private communication.Google Scholar

Copyright information

© Springer 1995

Authors and Affiliations

  • A. A. Dubinskii
    • 3
  • M. Huber
    • 1
  • Yu. Grishin
    • 2
  • K. Möbius
    • 3
  1. 1.Institut für Organische ChemieFreie Universität BerlinGermany
  2. 2.Institute of Chemical Kinetics and CombustionNovosibirskRussian Federation
  3. 3.Institut für MolekülphysikFreie Universität BerlinBerlinGermany

Personalised recommendations