Advertisement

Applied Magnetic Resonance

, Volume 15, Issue 3–4, pp 353–361 | Cite as

Frequency-dependent spin-lattice relaxation study of transport processes in superionic conductors

  • A. F. Privalov
  • S. V. Dvinskikh
  • F. Fujara
  • H. M. Vieth
Article

Abstract

The sensitivity of the19F spin-lattice relaxation dispersion, T1,(ω), to motional disorder in crystalline superionic conductors of the type La1−xSrxF3−x (x = 0; 0.03) is shown. T1 times are measured in the frequency range from 90 kHz to 370 MHz using standard techniques in combination with field-cycling. The relaxation dispersion shows qualitative differences from the standard Bloembergen-Purcell-Pound behavior. At low frequencies a relaxation model using a distribution of correlation times for diffusing ions is found to be consistent with the experimental results. At frequencies higher than 50 MHz another process of the Debye type which is not induced by ionic hopping dominates the relaxation.

Keywords

Correlation Time LaF3 Superionic Conductor Relaxation Dispersion Heterovalent Substitution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Noack F.: NMR Basic Princ. Prog.3, 83–144 (1971)Google Scholar
  2. [2]
    Noak F.: Prog. Nucl. Magn. Reson. Spectrosc.18, 171–276 (1986)CrossRefGoogle Scholar
  3. [3]
    Blanz M., Reyner T.J., Smith J.S.: Meas. Sci. Technol.4, 48–59 (1993)CrossRefADSGoogle Scholar
  4. [4]
    Job C., Zajicek J., Brown M.F.: Rev. Sci. Instrum.67, 2113–2122 (1996)CrossRefADSGoogle Scholar
  5. [5]
    Kimmich R.: NMR Tomography, Diffusometry, Relaxometry. Berlin: Springer 1997.Google Scholar
  6. [6]
    Terekov M.V., Dvinskikh S.V.: Instrum. Exp. Tech.39, 452–457 (1996)Google Scholar
  7. [7]
    Kanert O., Küchler R., Ngai K.L., Jain H.: Phys. Rev. B49, 76–82 (1994)CrossRefADSGoogle Scholar
  8. [8]
    Kanert O., Dieckhöfer J., Küchler R.: J. Noncryst. Solids203, 252–261 (1996)CrossRefADSGoogle Scholar
  9. [9]
    Privalov A.F., Vieth H.-M., Murin I.V.: J. Phys. Cond. Matt.6, 8237–8243 (1994)CrossRefADSGoogle Scholar
  10. [10]
    Mansmann M.: Z. Kristallogr.122, 375–398 (1965)CrossRefGoogle Scholar
  11. [11]
    Maximov B., Schulz H.: Acta Crystallogr.B41, 88–91 (1985)Google Scholar
  12. [12]
    Zalkin A., Templeton D.H.: Acta Crystallogr.B41, 91–93 (1985)Google Scholar
  13. [13]
    Murin I.V., Fujara F., Glumov O.V., Privalov A.F., Vieth H.-M.: Mater. Sci. Forum239-241, 407–412 (1997)CrossRefGoogle Scholar
  14. [14]
    Privalov A.F., Murin I.V., Vieth H.-M.: Solid State Ionics101-103, 393–396 (1997)Google Scholar
  15. [15]
    Sher A., Solomon R., Lee K., Muller M.W.: Phys. Rev.144, 593–604 (1966)CrossRefADSGoogle Scholar
  16. [16]
    Privalov A.F., Cenian A., Fujara F., Gabriel H., Murin I.V., Vieth H.-M.: J. Phys. Cond. Matt.9, 9275–9287 (1997)CrossRefADSGoogle Scholar
  17. [17]
    Dvinskikh S.V.: Instrum. Exp. Tech.39, 709–711 (1996)Google Scholar
  18. [18]
    Kim K.H., Torgeson D.R., Borsa F., Cho J., Martin S.W., Svare I.: Solid State Ionics91, 7–19 (1996)CrossRefGoogle Scholar
  19. [19]
    Svare I., Borsa F., Torgenson D.R., Martin S.W.: Phys. Rev. B48, 9336–9344 (1993)CrossRefADSGoogle Scholar
  20. [20]
    Moynihan C.T.: J. Noncryst. Solids172-174, 1395–1407 (1994)CrossRefADSGoogle Scholar
  21. [21]
    Chung S.H., Jeffrey K.R., Stevens J.R., Börjesson L.: Solid State Ionics40/41, 279–283 (1990)CrossRefGoogle Scholar

Copyright information

© Springer 1998

Authors and Affiliations

  • A. F. Privalov
    • 1
  • S. V. Dvinskikh
    • 2
  • F. Fujara
    • 1
  • H. M. Vieth
    • 3
  1. 1.Department of PhysicsDortmund UniversityDortmundGermany
  2. 2.Department of PhysicsSt.-Petersburg UniversitySt.-PetersburgRussian Federation
  3. 3.Institute of Experimental PhysicsFree University BerlinBerlinGermany

Personalised recommendations