Advertisement

Applied Magnetic Resonance

, Volume 9, Issue 3, pp 379–388 | Cite as

Study of synthetic diamonds by dynamic nuclear polarization-enhanced13C nuclear magnetic resonance spectroscopy

  • B. Yang
  • J. Zhou
  • H. Hu
  • L. Li
  • J. Qiu
  • J. Guo
  • P. He
  • J. Lu
  • C. Ye
Article

Abstract

Four Ib-type synthetic diamond crystals were studied by dynamic nuclear polarization (DNP)-enhanced high resolution solid state13C nuclear magnetic resonance (NMR) spectroscopy. The home built DNP magic-angle-spinning (MAS) NMR spectrometer operates at a field strength of 1.9 T and the highest DNP enhancement factor of synthetic diamonds came near to 103. Comparing with Ib-type natural diamonds, the13C NMR linewidths of synthetic diamonds in static spectra are broader. The13C spin-lattice relaxation time and DNP polarization time of synthetic diamond are shorter than those of Ib-type natural diamond. From the hyperfine structure of the DNP enhancement curve, four kinds of nitrogen-centred free radicals could be identified in synthetic diamond.

Keywords

Nuclear Magnetic Resonance Electron Spin Resonance Spectrum Dynamic Nuclear Polarization Natural Diamond Synthetic Diamond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bundy F.B., Hall H.T., Strong H.M., Wentorf R.H.: Nature176, 51 (1955)CrossRefADSGoogle Scholar
  2. [2]
    Angus J.C., Hayman C.C.: Science241, 913 (1988)CrossRefADSGoogle Scholar
  3. [3]
    Guyer R.L., Koshland D.E., Jr.: Science250, 1640 (1990)CrossRefADSGoogle Scholar
  4. [4]
    Retoofsky H.L., Friendel R.A.: J. Phys. Chem.77, 68 (1973)CrossRefGoogle Scholar
  5. [5]
    Henrichs P.M., Cofield M.L., Young R.H., Hewitt J.M.: J. Magn. Reson.58, 85 (1984)Google Scholar
  6. [6]
    Duijvestijn M.J., van der Lugt C., Smidt J., Wind R.A., Zilm K.W., Staplain D.C.: Chem. Phys. Lett.102, 25 (1983)CrossRefADSGoogle Scholar
  7. [7]
    Duijvestijn M.J., Wind R.A., Smidt J.: Physics138B, 147 (1986)Google Scholar
  8. [8]
    Un S., Prisner S., Weber R.T., Seaman M.J., Fishbein K.W., McDermott A.E., Singel D.J., Griffin R.G.: Chem. Phys. Lett.189, 54 (1992)CrossRefADSGoogle Scholar
  9. [9]
    Wind R.A., Duijvestijn M.J., van der Lugt C., Manenschijn A., Vriend J.: Prog. NMR Spec.17, 33–67, (1985)CrossRefGoogle Scholar
  10. [10]
    Zhou J., Li L., Hu H., Yang B., Dan Z., Qiu J., Guo J., Chen F., Ye C.: Solid State NMR3, 339 (1994)CrossRefGoogle Scholar
  11. [11]
    Eversole W.G.: US Patent No. 3.030,187; 3,030,188 (1962)Google Scholar
  12. [12]
    Knight D.S., White W.B.: J. Mater. Res.4, 385 (1989)CrossRefADSGoogle Scholar
  13. [13]
    Li L., Qiu J., Hu S., Liu W., Ye C.: Sciences in China, series A,22(4), 419 (1992) (in English)Google Scholar
  14. [14]
    Chai X., Guo J., Cheng F., Tang R.: Kexue Tongbao (Chinese Science Bulletin)33(22), 1886 (1988) (in English)Google Scholar
  15. [15]
    Bloembergen N.: Physica25, 386 (1949)CrossRefADSGoogle Scholar
  16. [16]
    Lock H., Maciel G.E., Johnson C.E.: J. Mater. Res.7, 2791 (1992)CrossRefADSGoogle Scholar
  17. [17]
    Pruski M., Lang D.P., Hwang Son-Jong, Jia H., Shinar J.: Phys. Rev. B49, 10635 (1994)CrossRefADSGoogle Scholar
  18. [18]
    Afeworki M., Schaefer J.: Macromolecules25, 4092 (1992)CrossRefADSGoogle Scholar

Copyright information

© Springer 1995

Authors and Affiliations

  • B. Yang
    • 1
  • J. Zhou
    • 1
  • H. Hu
    • 1
  • L. Li
    • 1
  • J. Qiu
    • 1
  • J. Guo
    • 1
  • P. He
    • 1
  • J. Lu
    • 1
  • C. Ye
    • 1
  1. 1.Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of PhysicsThe Chinese Academy of SciencesWuhanPeople’s Republic of China

Personalised recommendations