Applied Magnetic Resonance

, Volume 16, Issue 2, pp 223–236 | Cite as

High-frequency (94.9 GHz) EPR spectroscopy of paramagnetic centers in a neutron-irradiated sapphire single-crystal fiber

  • D. A. Schwartz
  • E. D. Walter
  • S. J. McIlwain
  • V. N. Krymov
  • D. J. Singel


Initial results are reported of an EPR study, conducted at 94.9 GHz, of a thermally annealed, neutron-irradiated white sapphire (α-Al2O3) single-crystal fiber. The optical centers produced in sapphire by neutron irradiation and thermal annealing are of interest for optical technologies involving the phenomenon of spectral hole-burning. While these centers have been modeled as consisting of electrons localized at anion vacancies, experimental tests of this model have been very limited. EPR spectroscopy — a choice technique for elucidating structural details of such color centers — reveals signals from numerous paramagnetic centers in this material. The predominant signals, with amplitudes a hundredfold greater than any other signals, derive from three closely related, highspin-multiplicity centers. These centers do not, however, derive from radiation-induced lattice defects: they are readily identified as Cr3+ (S = 3/2) and a pair of crystallographically equivalent Fe3+ (S=5/2) impurity ions. The advantages of high-frequency-EPR instrumentation in facilitating this identification are presented and discussed in detail. These advantages include enhanced sensitivity for this volume-limited, fiber sample. Moreover, the analysis of the spectra — entailing spectral assignments, evaluation of the spin-Hamiltonian parameters, and spin-counting — is greatly facilitated when the Zeeman interaction is dominant.


Sapphire Paramagnetic Center Color Center Zeeman Interaction Zeeman State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lebedev Ya.S.: Appl. Magn. Reson.7, 339–362 (1994); Lebedev Ya.S.: Modern Pulsed and Continuous-Wave Electron Spin Resonance (Kevan L., Bowman M.K., eds.), pp. 365–404. New York: Wiley 1990; Grinberg O.Ya., Dubinskii A.A., Lebedev Ya.S.: Russ. Chem. Rev.52, 850–865 (1983)CrossRefGoogle Scholar
  2. 2.
    Farrar C.T., Gerfen G.J., Griffin R.G., Force D.A., Britt R.D.: J. Phys. Chem. B101, 6634–6641 (1997); Gerfen G.J., Bellew B.F., Griffin R.G., Singel D.J., Ekberg C.A., Whittaker J.W.: J. Phys. Chem.100, 16739–16748 (1996); Un S., Tang X.-S., Diner B.A.: Biochemistry35, 679–684 (1996); Möbius K., Prisner T.F., Röher M.: Phys. Bl.52, 877–880 (1996); Wang W., Belford R.L., Clarkson R.B., Davis P.H., Forrer J., Nilges M.J., Timkin M.D., Walczak T., Thurnauer M.C.: Appl. Magn. Reson.6, 195–215 (1994); Budil D.E., Earle K.A., Freed J.H.: J. Phys. Chem.97, 1294–1303 (1993); Gerfen G.J., Bellew B.F., Un S., Bollinger J.M. Jr., Stubbe J., Griffin R.G., Singel D.J.: J. Am. Chem. Soc.115, 6420–6421 (1993); Gulin V.I., Dikanov S.A., Tsvetkov Yu.D., Evelo R.G., Hoff A.J.: Pure Appl. Chem.64, 903–906 (1992)CrossRefGoogle Scholar
  3. 3.
    Bellew B.F., Halkides C.J., Gerfen G.J., Griffin R.G., Singel D.J.: Biochemistry35, 12186–12193 (1996); Bellew B.F., Gerfen G.J., Farrar C.T., Carter P.H., Ruo B., Evans D.A., Griffin R.G., Singel D.J.: Biochemistry35, 12194–12212 (1996)CrossRefGoogle Scholar
  4. 4.
    Sildos I., Aizengendler M., Dolindo I., Renge I.: Opt. Commun.73, 223–226 (1989)CrossRefADSGoogle Scholar
  5. 5.
    Sildos I., Aizengendler M., Dolindo I.: Opt. Commun.81, 43–46 (1991)CrossRefADSGoogle Scholar
  6. 6.
    Moerner W.E. (ed.): Persistent Spectral Hole-Burning: Science and Applications. New York: Springer 1988.Google Scholar
  7. 7.
    Evans B.D., Stapelbroek M.: Solid State Commun.33, 765–770 (1980); Welch L.S., Hughes A.E., Pells G.P.: J. Phys. C Solid State Phys.13, 1805–1816 (1980); Springis M.J., Valbis J.A.: Phys. Status Solidi B123, 335–343 (1984)CrossRefADSGoogle Scholar
  8. 8.
    Pogatschnik G.J., Chen Y., Evans B.D.: IEEE Trans. Nucl. Sci.NS-34, 1709–1712 (1987); Baryshnikov V.I., Kolenikova T.A., Martynovich E.F., Shchepina L.I.: Opt. Spect. (USSR)66, 544–546 (1989); Atobe K., Nishimoto N., Nakagawa M.: Phys. Status Solidi89, 155–162 (1984)CrossRefADSGoogle Scholar
  9. 9.
    Barra A.-L., Brunel L.-C., Gatteschi D., Pardi L., Sessoli R.: Acc. Chem. Res.31, 460–466 (1998); Aubin S.M.J., Dilley N.R., Pardi L., Krystek J., Wemple M.W., Brunel L.-C., Maple M.B., Christou G., Hendrickson D.N.: J. Am. Chem. Soc.120, 4991–5004 (1998)CrossRefGoogle Scholar
  10. 10.
    Lynch W.B., Boorse R.S., Freed J.H.: J. Am. Chem. Soc.115, 10909–10915 (1993)CrossRefGoogle Scholar
  11. 11.
    Tipikin D.S., Lebedev Ya.S., Pouletkov O.G., Schmidt J.: Chem. Phys. Lett.215, 199–202 (1993); Chemerisov S.D., Perekhodtsev G.D., Tipikin D.S., Lebedev Ya.S., Prokof’ev A.I., Aleksandrov A.I., Dubinskii A.A., Möbius K., Pouletkov O.G., Schmidt J.: J. Chem. Soc. Faraday Trans.92, 1959–1968 (1996)CrossRefADSGoogle Scholar
  12. 12.
    Yen W.M. in: Insulating Materials for Optoelectronics. Preparation of Single Crystal Fibers (Agul-lo-Lopez F., ed.). Singapore: World Scientific 1995.Google Scholar
  13. 13.
    Burghaus O., Roher M., Götzinger T., Plato M., Möbius K.: Meas. Sci. Technol.3, 765–774 (1992)CrossRefADSGoogle Scholar
  14. 14.
    Zverev G.M., Prokhorov A.M.: J. Exp. Theor. Phys. (USSR)34, 513–514 (1958); Sov. Phys. JETP7, 354–355 (1958)Google Scholar
  15. 15.
    Konienko L.S., Prokhorov A.M.: J. Exp. Theor. Phys. (USSR)40, 1594–1601 (1961); Sov. Phys. JETP13, 1120–1125 (1961)Google Scholar
  16. 16.
    Manenkov A.A., Prokhorov A.M.: J. Exp. Theor. Phys. (USSR)31, 346–347 (1956); Sov. Phys. JETP4, 288–289 (1956)Google Scholar
  17. 17.
    Galeener F.L.: J. Noncryst. Solids149, 27–31 (1992); Devine R.A.B., Arndt J.: Phys. Rev. B39, 5132–5138 (1989); Devine R.A.B.: J. Noncryst. Solids107, 41–48 (1988)CrossRefADSGoogle Scholar
  18. 18.
    Buijsse B., Schmidt J., Chan I.Y., Singel D.J.: Phys. Rev. B51, 6215–6220 (1995); Regev A., Freed J.H.: J. Chem. Phys.103, 5315–5325 (1995)CrossRefADSGoogle Scholar
  19. 19.
    Lin L.-B., Luo D.-L., Zhang C.-X., Lu T.-C.: Nucl. Instrum. Methods141, 450–454 (1998)CrossRefGoogle Scholar
  20. 20.
    Auerbach R.L., Richards P.L.: Phys. Rev. B12, 2588–2595 (1975)CrossRefADSGoogle Scholar
  21. 21.
    Rose T.S., Hopkins M.S., Fields R.A.: IEEE J. Quant. Elect.31, 1593–1602 (1995)CrossRefADSGoogle Scholar
  22. 22.
    Manenkov A.A., Prokhorov A.M.: J. Exp. Theor. Phys. (USSR)28, 762 (1955); Sov. Phys. JETP1, 611 (1955)Google Scholar
  23. 23.
    Schulz-Du Bois E.O.: Bell Syst. Tech. J.38, 271–291 (1959)Google Scholar
  24. 24.
    Klein H., Scherz U., Schulz M., Setyono H., Wisnewski K.: Z. Phys. B28, 149–157 (1977)CrossRefADSGoogle Scholar
  25. 25.
    Kido G., Miura N.: Appl. Phys. Lett.41, 569–571 (1982)CrossRefADSGoogle Scholar
  26. 26.
    Geusic J.E.: Phys. Rev.102, 1252–1255 (1956)CrossRefADSGoogle Scholar

Copyright information

© Springer 1999

Authors and Affiliations

  • D. A. Schwartz
    • 1
  • E. D. Walter
    • 1
  • S. J. McIlwain
    • 1
  • V. N. Krymov
    • 1
  • D. J. Singel
    • 1
  1. 1.Department of Chemistry and Biochemistry, and the Optical Technology CenterMontana State UniversityBozemanUSA

Personalised recommendations