Skip to main content
Log in

Quantitative EPR spectroscopy: Comparison between primary standards and application to MgO-MnO and α-Al2O3-Cr2O3 solid solutions

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

To study their reliability as primary standards in the quantitative EPR spectroscopy, a large series of pure paramagnetic compounds with known spin concentrations, whose spectra vary considerably in intensity, shape, structure and overall width are compared. The paramagnetic species examined as pure solid compounds and solutions, were free radicals (DPPH and TEMPO), vanadyl and Cu2+ ions (S = 1/2), Cr3+ (S = 3/2) and Mn2+ (5 = 5/2) ions. The quantitative EPR findings suggest that all theS = 1/2 paramagnetic compounds investigated and MnSO4 · H2O (S = 5/2) are reliable primary standards. By contrast, none of the pure Cr3+ compounds proved useful as primary standards because of their large fine-structure terms or high Néel temperature that invalidated the simple Curie law. Application of quantitative EPR in the study of dilute MgO-MnO and α-Al2O3-Cr2O3 solid solutions, focussing on the circumstances making paramagnetic species undetectable, is reported. In MgO-MnO solid solutions of high surface area, detection problems arising from the variation of local site symmetry can be circumvented and almost all Mn2+ are detected only by reducing the surface area. In concentrated α-Al2O3-Cr2O3 solid solutions, magnetic interactions lead to paramagnetic species being undetectable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yordanov N.D., Ivanova M.: Appl. Magn. Reson.6, 333 (1994)

    Article  Google Scholar 

  2. Occhiuzzi M., Tuti S., Cordischi D., Dragone R., Indovina V.: J. Chem. Soc. Faraday Trans.92, 4337 (1996)

    Article  Google Scholar 

  3. Dyrek K., Rokosz A., Madej A.: Appl. Magn. Reson.6, 309 (1994)

    Article  Google Scholar 

  4. Goldberg I.B., Crowe H.R., Robertson W.M.: Anal. Chem.49, 962 (1977)

    Article  Google Scholar 

  5. Poole C.P. Jr., Itzel J.F. Jr.: J. Chem. Phys.41, 287 (1964)

    Article  ADS  Google Scholar 

  6. Poole C.P. Jr.: Electron Spin Resonance. A Comprehensive Treatise on Experimental Techniques. New York: Wiley-Interscience 1967.

    Google Scholar 

  7. Alger R.S.: Electron Paramagnetic Resonance. Techniques and Applications. New York: Wiley-Interscience 1968.

    Google Scholar 

  8. Wertz J.E., Bolton J.R.: Electron Spin Resonance. Elementary Theory and Practical Applications. New York: McGraw-Hill 1972.

    Google Scholar 

  9. Eaton S.S., Eaton G.R.: Bull. Magn. Reson.1, 130 (1980)

    Google Scholar 

  10. Chang Te-Tse: Magn. Reson. Rev.9, 65 (1984)

    Google Scholar 

  11. Yordanov N.D.: Appl. Magn. Reson.6, 241 (1994)

    Article  Google Scholar 

  12. Barklie R.C., Sealy L.: J. Magn. Reson.97, 611 (1992)

    Google Scholar 

  13. Nagy V.: Appl. Magn. Reson.6, 259 (1994)

    Article  Google Scholar 

  14. Cordischi D., Lo Jacono M.: Z. Phys. Chem. N. F.74, 93 (1971)

    Google Scholar 

  15. Cordischi D., Indovina V. in: Adsorption and Catalysis on Oxide Surfaces (Che M., Bond G.C., eds.), p. 209. Amsterdam: Elsevier 1985.

    Google Scholar 

  16. Gazzoli D., Occhiuzzi M., Cimino A., Cordischi D., Minelli G., Pinzari F.: J. Chem Soc. Faraday Trans.92(22), 4567 (1996)

    Article  Google Scholar 

  17. Botto L.L., Garcia A.C., Thomas H.J.: J. Phys. Chem. Solids53, 1075 (1992)

    Article  ADS  Google Scholar 

  18. Eaton S.S., Eaton G.R.: Anal. Chem.49, 1277 (1977)

    Article  Google Scholar 

  19. Dalai D.P., Eaton S.S., Eaton G.R.: J. Magn. Reson.44, 415 (1981)

    Google Scholar 

  20. Goldberg I.B., Crowe H.R.: Anal. Chem.49, 1353, (1977)

    Article  Google Scholar 

  21. Halliburton L.E., Jani M.G., Bossoli R.B.: Nucl. Instrum. Meth. Phys. Res. B1, 192 (1984)

    Article  ADS  Google Scholar 

  22. Goldberg I.B.: J. Magn. Reson.32, 233 (1978)

    Google Scholar 

  23. Van Reijen L.L.: Ph. D. Thesis, Technische Hogeschool, Eindhoven, The Netherlands 1964.

  24. Botto J.L., Cabello C.J., Thomas H.J., Cordischi D., Minelli G., Porta P.: Mat. Chem. Phys. (in press)

  25. Manoogian A., Leclerc A.: J. Chem. Phys.64, 4504 (1976)

    Article  ADS  Google Scholar 

  26. Singer L.S.: J. Chem. Phys.23, 379 (1955)

    Article  ADS  Google Scholar 

  27. Allain Y., Krebs J.P., De Gunzbourg J. in: Proceedings of the International Congress on Magnetism, Boston, September 10–16, 1967. Solid State Physics Literature Guides, vol. 5, p. 99. New York: IFI/Plenum 1972.

    Google Scholar 

  28. Cordischi D., Nelson R.L., Tench A.J.: Trans. Faraday Soc.65, 2740 (1969)

    Article  Google Scholar 

  29. Geusic J.E.: Phys. Rev.102, 1252 (1956)

    Article  ADS  Google Scholar 

  30. O’Reilly D.E., Maclver D.S.: J. Phys. Chem.66, 276 (1962)

    Article  Google Scholar 

  31. Stone F.S., Vickerman J.C.: Trans. Faraday Soc.67, 316 (1971)

    Article  Google Scholar 

  32. Behringer R.E.: J. Chem. Phys.29, 537 (1958)

    Article  ADS  Google Scholar 

  33. Gesmundo F., De Asmundis C.: J. Phys. Chem. Solids34, 1757 (1973)

    Article  ADS  Google Scholar 

  34. Gesmundo F., De Asmundis C.: J. Phys. Chem. Solids33, 1861 (1972)

    Article  ADS  Google Scholar 

  35. Gesmundo F., De Asmundis C.: J. Phys. Chem. Solids34, 637 (1973)

    Article  ADS  Google Scholar 

  36. Gesmundo F., De Asmundis C.: Ann. Chim.63, 655 (1973)

    Google Scholar 

  37. Cordischi D., Lo Jacono M., Minelli G., Porta P.: J. Catal.102, 1 (1986)

    Article  Google Scholar 

  38. Gayda J.P., Deville A., Lendway E.: J. Physique33, 935 (1972)

    Article  Google Scholar 

  39. Gazzoli D., Occhiuzzi M., Cimino A., Cordischi D., Minelli G., Pinzari F.: J. Chem. Soc. Faraday Trans.92, 4567 (1996)

    Article  Google Scholar 

  40. Laurance N., Mac Irvine E.C., Lambe J.: J. Phys. Chem. Solids23, 515 (1962)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordischi, D., Occhiuzzi, M. & Dragone, R. Quantitative EPR spectroscopy: Comparison between primary standards and application to MgO-MnO and α-Al2O3-Cr2O3 solid solutions. Appl. Magn. Reson. 16, 427–445 (1999). https://doi.org/10.1007/BF03161929

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03161929

Keywords

Navigation