Advertisement

Applied Magnetic Resonance

, Volume 16, Issue 1, pp 101–134 | Cite as

The transient EPR spectra and spin dynamics of coupled three-spin systems in photosynthetic reaction centres

  • K. M. Salikhov
  • A. J. van der Est
  • D. Stehlik
Article

Abstract

The concept of introducing an additional, stable paramagnetic species into photosynthetic reaction centres to increase the information content of their spin polarized transient EPR spectra is investigated theoretically. The light-induced electron transfer in such systems generates a series of coupled three-spin states consisting of sequential photoinduced radical pairs coupled to the stable spin which acts as an “observer”. The spin polarized transient EPR spectra are investigated using the coupled three-spin system P+IQ A in pre-reduced bacterial reaction centres as a specific example which has been studied experimentally. The evolution of the spin system and the spin polarized EPR spectra of P+IQ A and Q A following recombination of the radical pair (P = primary donor, I = primary acceptor, QA = quinone acceptor) are calculated numerically by solving the equations of motion for the density matrix. The net polarization of the observer spin is also calculated analytically by perturbation theory for the case of a single, short-lived, charge-separated state. The result bears a close resemblance to the chemically induced nuclear polarization (CIDNP) generated in photolysis reactions in which a nuclear spin plays the role of the observer interacting with the radical pair intermediates. However, because the Zeeman frequencies of the three electron spins involved are usually quite similar, the polarization of the electron observer spin in strong magnetic fields can reflect features of the CIDNP effect in both, high and low magnetic fields. The dependence of the quinone spin polarization on the exchange couplings in the three-spin system is investigated by numerical simulations, and it is shown that the observed emissive polarization pattern is compatible with either sign, positive or negative, for a range of exchange couplings, JPI, in the primary pair. The microwave frequency and orientation dependence of the spectra are discussed as two of several possible criteria for determining the sign of JPI.

Keywords

Spin Polarization Polarization Pattern Chemically Induce Dynamic Nuclear Polarization Observer Spin Zeeman Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bixon M., Fajer J., Feher G., Freed J.H., Gamliel D., Hoff A.J., Levanon H., Möbius K., Nechushtai R., Norris J.R., Scherz A., Sessler J.L., Stehlik D.: Isr. J. Chem.32, 9 (1992)Google Scholar
  2. 2.
    Hoff A.J., Deisenhofer J.: Phys. Rep.287, 1–247 (1997)CrossRefADSGoogle Scholar
  3. 3.
    Angerhofer A., Bittl R.: Photochem. Photobiol.63, 11–38 (1996)CrossRefGoogle Scholar
  4. 4.
    Stehlik D., Möbius K.: Annu. Rev. Phys. Chem.48, 745–784 (1997)CrossRefGoogle Scholar
  5. 5.
    Feynman R.: Optics News11, 11–20 (1985)Google Scholar
  6. 6.
    Laflamme R., Miquel C., Paz P., Zurek W.: Phys. Rev. Lett.77, 198–201 (1996)CrossRefADSGoogle Scholar
  7. 7.
    Kaptein R.: Ph.D. Thesis, Leiden, The Netherlands 1971.Google Scholar
  8. 8.
    Salikhov K.M., Molin Yu.N., Sagdeev R.Z., Buchachenko A.L.: Spin Polarization and Magnetic Effects in Radical Reactions. Amsterdam: Elsevier 1984.Google Scholar
  9. 9.
    Hubbell W.L., Altenbach C. in: Membrane Protein Structure, Experimental Approaches (White S.H., ed.), pp. 224–248. London: Oxford University Press 1994.Google Scholar
  10. 10.
    Hubbell W.L., Altenbach C.: Curr. Opin. Struct. Biol.4, 566–573 (1994)CrossRefGoogle Scholar
  11. 11.
    Gast, P., Hoff A.J.: Biochim. Biophys. Acta548, 520–535 (1979)CrossRefGoogle Scholar
  12. 12.
    Gast P., De Groot A., Hoff A.J.: Biochim. Biophys. Acta723, 52–58 (1983)CrossRefGoogle Scholar
  13. 13.
    Bosch M.K., Gast P., Franken E.M., Zwanenburg G., Hore P.J., Hoff A.J.: Biochim. Biophys. Acta1276, 106–116 (1996)CrossRefGoogle Scholar
  14. 14.
    Hore P.J., Riley D.J., Semlyen J.J., Zwanenburg G., Hoff A.H.: Biochim. Biophys. Acta1141, 221–230 (1993)CrossRefGoogle Scholar
  15. 15.
    Proskuryakov I.I., Kienina I.B., Hore P.J., Bosch M.K., Gast P., Hoff A.J.: Chem. Phys. Lett.257, 333–339 (1996)CrossRefADSGoogle Scholar
  16. 16.
    Till U., Kienina I.B., Proskuryakov I.I., Hoff A.J., Hore P.J.: J. Phys. Chem. B101, 10939–10948 (1997)CrossRefGoogle Scholar
  17. 17.
    Molin Yu.N., Salikhov K.M., Zamaraev K.I.: Spin Exchange. Principles and Applications in Chemistry and Biology, p. 242. Heidelberg: Springer 1980.Google Scholar
  18. 18.
    Goldberg A.H., Dougherty D.A.: J. Am. Chem. Soc.105, 284–290 (1983)CrossRefGoogle Scholar
  19. 19.
    Closs G.L., Forbes D.E., Norris J.R. Jr.: J. Phys. Chem.91, 3592–3599 (1987)CrossRefGoogle Scholar
  20. 20.
    Klette R., Törring J.T., Plato M., Möbius K., Bönigk B., Lubitz W.: J. Phys. Chem.97, 2015–2020 (1993)CrossRefGoogle Scholar
  21. 21.
    Okamura M.Y., Isaacson R.A., Feher G.: Biochim. Biophys. Acta546, 394–417 (1979)CrossRefGoogle Scholar
  22. 22.
    Burghaus O., Plato M., Rohrer M., Möbius M., MacMillan F., Lubitz W.: J. Phys. Chem.97, 7639–7647 (1993)CrossRefGoogle Scholar
  23. 23.
    Ermler U., Fritzsch G., Buchanan S., Michel H.: Structure2, 925–936 (1994)CrossRefGoogle Scholar
  24. 24.
    Bittl R., Zech S.: J. Phys. Chem. B101, 1429–1436 (1997)CrossRefGoogle Scholar
  25. 25.
    Hoff A.J., Proskuryakov I.I.: Chem. Phys. Lett.115, 303–310 (1985)CrossRefADSGoogle Scholar
  26. 26.
    Van den Brink J.S., Manikowski H., Gast P., Hoff A.J.: Biochim. Biophys. Acta1185, 177–187 (1994)CrossRefGoogle Scholar
  27. 27.
    Bosch M.K., Proskuryakov I.I., Gast P., Hoff A.J.: J. Phys. Chem.100, 2384–2390 (1996)CrossRefGoogle Scholar
  28. 28.
    Corvaja C., De Marchi M., Toffoletti A.: Appl. Magn. Reson.12, 1–14 (1997)CrossRefGoogle Scholar
  29. 29.
    Sarvarov F.S., Salikhov K.M., Sagdeev R.Z.: Chem. Phys.16, 41–47 (1976)CrossRefADSGoogle Scholar
  30. 30.
    Salikhov K.M.: Chem. Phys.64, 371–378 (1982)CrossRefADSGoogle Scholar
  31. 31.
    Prisner T.F., van der Est A., Bittl R., Lubitz W., Stehlik D., Möbius K.: Chem. Phys.194, 361–370 (1995)CrossRefGoogle Scholar
  32. 32.
    Morozova O.B., Tsentalovich Yu.P., Yurkovskaya A.V., Sagdeev R.Z.: J. Phys. Chem. A102, 3492–3497 (1998)CrossRefGoogle Scholar
  33. 33.
    van der Est A., Bittl R., Abresh E.C., Lubitz W., Stehlik D.: Chem. Phys. Lett.212, 561–568 (1993)CrossRefADSGoogle Scholar

Copyright information

© Springer 1999

Authors and Affiliations

  • K. M. Salikhov
    • 1
  • A. J. van der Est
    • 2
  • D. Stehlik
    • 2
  1. 1.Kazan Physical-Technical InstituteKazanRussian Federation
  2. 2.Fachbereich PhysikFreie UniversitätBerlinGermany

Personalised recommendations