Applied Magnetic Resonance

, Volume 14, Issue 2–3, pp 203–215 | Cite as

EPR studies of photoinduced electron transfer in triad model compounds of photosynthesis

  • H. Kurreck
  • G. Elger
  • J. von Gersdorff
  • A. Wiehe
  • K. Möbius


Time-resolved EPR spectra are reported for porphyrin-quinone-quinone and porphyrin-porphyrin-quinone triads obtained after photoexcitation in the nematic and soft glass phase of liquid crystals. Spin-polarized EPR spectra were observed for the triplet states of the porphyrin created by spin-selective intersystem crossing (ISC) from the excited singlet state and those of the charge-separated radical pair states (RP) generated by electron transfer (ET) processes. The EPR polarization patterns of the RP are discussed in terms of the favored decay channel of the photoexcited singlet state of the porphyrin donor. The decay pathway may either be singlet ET to the quinone(s) followed by singlet/triplet mixing to yield RPs with triplet character or triplet ET after ISC from the porphyrin singlet to the triplet state, or a superposition of both pathways. It is demonstrated that the nature of the linking bridge between donor and acceptor, i.e., aliphatic cyclohexylene or aromatic phenylene, significantly influences the ET mechanism and thus the polarization patterns of the RP spectra. Using liquid crystals, information about the orientation of the guest molecules in the liquid crystal matrix with respect to the long axes of the liquid crystal molecules can be obtained. In the porphyrin-porphyrin-quinone triads the energy and ET processes strongly depend on the type of metallation of the porphyrins, specifically, whether the distal, the vicinal or both porphyrins bear a zinc atom.


Porphyrin Triplet State Radical Pair Liquid Crystal Molecule Zinc Porphyrin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Gust D., Moore T.A.: Adv. Photochem.16, 1–65 (1991)CrossRefGoogle Scholar
  2. [2]
    Gust D., Moore T.A.: Top. Curr. Chem.159, 103–151 (1991)Google Scholar
  3. [3]
    Bixon M., Fajer J., Feher G., Freed J.H., Gamliel D.A., Hoff A.J., Levanon H., Mobius K., Nechushtai R., Norris J.R., Scherz A., Sessler J.L., Stehlik D.: Isr. J. Chem.32, 449–518 (1992)Google Scholar
  4. [4]
    Kurreck H., Huber M.: Angew. Chem.107, 929–947 (1995); Angew. Chem. Int. Ed. Engl.34, 849–866 (1995)CrossRefGoogle Scholar
  5. [5]
    Wasielewski M.R.: Chem. Rev.92, 435–461 (1992)CrossRefGoogle Scholar
  6. [6]
    Lendzian F., von Maltzan B.: Chem. Phys. Lett.180, 191–197 (1991)CrossRefADSGoogle Scholar
  7. [7]
    Lendzian F., Schlupmann J., von Gersdorff J., Mobius K., Kurreck H.: Angew. Chem.103, 1536–1539 (1991); Angew. Chem. Int. Ed. Engl.30, 1461–1463 (1991)CrossRefGoogle Scholar
  8. [8]
    Schlupmann J., Lendzian F., Plato M., Mobius K.: J. Chem. Soc. Faraday Trans.89, 2853–2862 (1993)CrossRefGoogle Scholar
  9. [9]
    Hasharoni K., Levanon H., von Gersdorff J., Kurreck H., Mobius K.: J. Chem. Phys.98, 2916–2926 (1993)CrossRefADSGoogle Scholar
  10. [10]
    Hasharoni K., Levanon H., Gatschmann J., Schubert H., Kurreck H., Mobius K.: J. Phys. Chem.99, 7514–7521 (1995)CrossRefGoogle Scholar
  11. [11]
    Hasharoni K., Levanon H.: J. Phys. Chem.99, 4875–4878 (1995)CrossRefGoogle Scholar
  12. [12]
    Berman A., Izraeli E.S., Levanon H., Wang B., Sessler J.L.: J. Am. Chem. Soc.117, 8252–8257 (1995)CrossRefGoogle Scholar
  13. [13]
    Prisner T.F., van der Est A., Bittel R., Lubitz W., Stehlik D., Mobius K.: Chem. Phys.194, 361–370 (1995)CrossRefGoogle Scholar
  14. [14]
    Wiehe A., Senge M.O., Kurreck H.: Liebigs Ann. Chem. (in press)Google Scholar
  15. [15]
    Lendzian F., Jaegermann P., Mobius K.: Chem. Phys. Lett.120, 195–200 (1985)CrossRefADSGoogle Scholar
  16. [16]
    Elger G., Kurreck H., Wiehe A., Johnen E., Fuhs M., Prisner T., Vrieze J.: Acta Chem. Scand.51, 593–601 (1997)CrossRefGoogle Scholar
  17. [17]
    Kirste B., Tian P., Kalisch W., Kurreck H.: J. Chem. Soc. Perkin Trans.2, 1995, 2147–2152.Google Scholar
  18. [18]
    von Gersdorff J.: Ph. D. Thesis, Free University of Berlin, Berlin 1991; J. Sobek: Ph. D. Thesis, Free University of Berlin, Berlin 1996.Google Scholar
  19. [19]
    Wasielewski M.R. in: The Photonsynthetic Reaction Center (Deisenhofer J., Norris J.R., eds.), vol. II, p. 465–511. San Diego: Academic Press 1993.Google Scholar
  20. [20]
    Rempel U., von Maltzan B., von Borczykowski C.: Chem. Phys. Lett.169, 347–354 (1990)CrossRefADSGoogle Scholar
  21. [21]
    Jaegermann P., Plato M., von Maltzan B., Mobius K.: Mol. Phys.78, 1057–1074 (1993)CrossRefADSGoogle Scholar

Copyright information

© Springer 1998

Authors and Affiliations

  • H. Kurreck
    • 1
  • G. Elger
    • 2
  • J. von Gersdorff
    • 1
  • A. Wiehe
    • 1
  • K. Möbius
    • 2
  1. 1.Institute of Organic ChemistryFree University of BerlinBerlinGermany
  2. 2.Institute of Experimental PhysicsFree University of BerlinBerlinGermany

Personalised recommendations