Metallurgical Transactions A

, Volume 6, Issue 11, pp 2037–2048 | Cite as

Fracture toughness of powder forged Cr-Mn alloy steels

  • T. J. Ladanyi
  • G. A. Meyers
  • R. M. Pilliar
  • G. C. Weatherly
Mechanical Behavior


The fracture characteristics of a powder forged Cr-Mn alloy steel have been evaluated by plane strain fracture toughness tests. The toughness values obtained have been related to the distribution of non-metallic inclusions that result from different thermal and mechanical treatments. A comprehensive study was made of the inclusions. Two basic types were found: coarse inclusions > 10 μm were manganese silicates or alumino-silicates, while fine inclusions (∼1 μm) were oxide spinels or manganese (alumino) silicates. These finer inclusions were found to strongly influence the fracture mode and toughness of the material. It is believed that these coarse and fine inclusions formed at different periods during processing of the powder. Ways to optimize the fracture toughness of these powder forged parts are considered.


Fracture Toughness Metallurgical Transaction Reduction Ratio Particle Boundary Large Inclusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. F. Fischmeister, L. Olsson, and K. E. Easterling:Powder Met. Int., 1974, vol. 6, p. 30.Google Scholar
  2. 2.
    K. H. MoyenMetal Prog., 1974, vol. 105, no. 5, p. 105.Google Scholar
  3. 3.
    P. C. Eloff and S. M. Kaufman,Powder Met. Int., 1971, vol. 3, p. 71.Google Scholar
  4. 4.
    “Standard Method of Test for Plane-Strain Fracture Toughness of Materials”;A.S.T.M., 1972, vol. 31, E 399, p. 955.Google Scholar
  5. 5.
    R. M. Pilliar, W. J. Bratina and J. T. McGrath;Modern Developments in Powder Metallurgy, vol. 7, p. 51, Metal Powder Industries Federation, Princeton, N. J., 1974.Google Scholar
  6. 6.
    R. Davies and R. H. T. Dixon,Powder Met., 1971, vol. 14, p. 207.Google Scholar
  7. 7.
    P. J. Reed, D. A. Reeve, J. H. Walsh and J. E. Rihder,Can. Met. Quart., 1974, vol. 13, p. 587.Google Scholar
  8. 8.
    R. Riesling and N. Lange:Non-Metallic Inclusions in Steel, Iron and Steel Institute, 1964, Special Report 90.Google Scholar
  9. 9.
    L. Luyckx, B. N. Ferry and A. McLean:J. Metals, 1974, vol. 26, no. 6, p. 35.Google Scholar
  10. 10.
    D. C. Hilty, W. D. Forgeng and R. L. Folkman:J. Metals, 1955, vol. 7, p. 253.Google Scholar
  11. 11.
    J. F. Elliott and M.Gleiser:Thermochemistry for Steelmaking, 1960, (Addison-Wesley Publishing Co.).Google Scholar
  12. 12.
    P. N. T. Unwin and G. C. Smith:J. Inst. Met., 1969, vol. 97, p. 299.Google Scholar
  13. 13.
    I. Kirman:Met. Trans., 1971, vol. 2, p. 1761.Google Scholar
  14. 14.
    J. R. Rice and M. A. Johnson:Inelastic Behavior of Solids, M. F. Kanninenet al., eds., 1970, p. 641, (McGraw-Hill, New York).Google Scholar
  15. 15.
    G. T. Hahn and A. R. Rosenfield:Met Trans. A, 1975, vol. 6A, p. 653.CrossRefGoogle Scholar
  16. 16.
    R. M. Pilliar, T. J. Ladanyi, G. A. Meyers and G. C. Weatherly:Proceedings of 4th Int. Conf. on Powder Metallurgy, Vysoke-Tatry, Czechoslovakia, Part I, p. 233, 1974.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1975

Authors and Affiliations

  • T. J. Ladanyi
    • 1
  • G. A. Meyers
    • 2
  • R. M. Pilliar
    • 3
  • G. C. Weatherly
    • 4
  1. 1.Trans-Canada PipelinesToronto
  2. 2.Alcan Canada, Kingston WorksKingston
  3. 3.Ontario Research Foundation, Centre for P.M.Mississauga
  4. 4.Department of Metallurgy and Materials ScienceUniversity of Toronto

Personalised recommendations