Advertisement

Wetlands

, Volume 17, Issue 2, pp 167–181 | Cite as

Response of benthic and planktonic algal biomass to experimental water-level manipulation in a prairie lakeshore wetland

  • Gordon G. C. Robinson
  • Sharon E. Gurney
  • L. Gordon Goldsborough
Article

Abstract

The quantitative contribution of benthic (periphytic) and planktonic algae to primary production in prairie wetlands is largely unknown, as is their response to the fluctuations in water level that characterize such systems. We measured the biomass (chlorophyll-a m−2 of wetland area) of phytoplankton, epipelon, epiphyton, and metaphyton in Delta Marsh, Manitoba as part of a five-year study in which diked, drawn down cells were reflooded to the normal level of the wetland, or to a depth 30 cm or 60 cm deeper. Our objective was to investigate the effects of flooding depth on algal biomass and the relative contributions by each of the four algal assemblages. Floating metaphyton mats flourished in all cells after flooding, contributing about 87% of total algal biomass. Epiphytes contributed 11% of biomass, and epipelon and phytoplankton each contributed 1%. Emergent macrophyte density was reduced by flooding, leading to increases in open water area. The wetland cells changed gradually over the study period from an early “open wetland” to a “sheltered wetland.” In late stages of the study, phytoplankton became more abundant as the cells proceeded to a “lake wetland” state.

Key Words

algae periphyton epipelon epiphyton metaphyton phytoplankton biomass production marsh wetland prairie Canada 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Barica, J. 1975. Collapses of algal blooms in prairie pothole lakes: their mechanism and ecological impact. Verhandlungen Internationale Vereinigung für Limnologie 19:606–615.Google Scholar
  2. Browder, J. A., P. J. Gleason, and D. R. Swift. 1994. Periphyton in the Everglades: spatial variation, environmental correlates, and ecological implications. p. 379–418.In S. M. Davis and J. C. Ogden (eds.) Everglades, The Ecosystem and Its Restoration. St. Lucie Press, Delray Beach, FL, USA.Google Scholar
  3. Clark, W. R. 1994. Habitat selection by muskrats in experimental marshes undergoing succession. Canadian Journal of Zoology 72: 675–680.CrossRefGoogle Scholar
  4. Cronk, J. K. and W. J. Mitsch. 1994. Periphyton productivity on artificial and naural surfaces in constructed freshwater wetlands under different hydrologic regimes. Aquatic Botany 48:325–341.CrossRefGoogle Scholar
  5. Dodds, W. K. and D. A. Gudder. 1992. The ecology ofCladophora. Journal of Phycology 28:415–427.CrossRefGoogle Scholar
  6. Eaton, J. W. and B. Moss. 1966. The estimation of numbers and pigment content in epipelic algal populations. Limnology and Oceanography 11:584–595.Google Scholar
  7. Eiseltová, M. and J. Pokorný. 1994. Filamentous algae in fish ponds of the Trebon Biosphere Reserve-ecophysiological study. Vegetatio 113:115–170.Google Scholar
  8. Fong, P. and J. B. Zedler. 1993. Temperature and light effects on the seasonal succession of algal communities in shallow coastal lagoons. Journal of Experimental Marine Biology and Ecology 171:259–272.CrossRefGoogle Scholar
  9. Goldsborough, L. G. and G. G. C. Robinson. 1996. Pattern in Wetlands. p. 77–117.In R. J. Stevenson, M. L. Bothwell, and R. L. Lowe (eds.) Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, New York, NY, USA.Google Scholar
  10. Goldsborough, L. G., G. G. C. Robinson, and S. E. Gurney. 1986. An enclosure/substratum system for in situ ecological studies of periphyton. Archiv für Hydrobiologie 106:373–393.Google Scholar
  11. Gurney, S. E. and G. G. C. Robinson. 1988. The influence of water level manipulation on metaphyton production in a temperate freshwater marsh. verhandlungen Internationale Vereinigung Limnologie 23:1032–1040.Google Scholar
  12. Hann, B. J. 1991. Invertebrate grazer-periphyton interactions in a eutrophic marsh pond. Freshwater Biology 26:87–96.CrossRefGoogle Scholar
  13. Hanson, M. A. and M. G. Butler. 1994. Responses to food web biomanipulation in a shallow waterfowl lake. Hydrobiologia 279/280:457–466.CrossRefGoogle Scholar
  14. Hosseini, S. M. and A. G. van der Valk. 1989a. Primary productivity and biomass of periphyton and phytoplankton in flooded freshwater marshes. p. 303–315.In R. R. Sharitz and J. W. Gibbons (eds.) Freshwater Wetlands and Wildlife. DOE Symposium Series No. 61, USDOE Office of Scientific and Technical Information, Oak Ridge, TN, USA.Google Scholar
  15. Hosseini, S. M. and A. G. van der Valk. 1989b. The impact of prolonged, above-normal flooding on metaphyton in a freshwater marsh. p. 317–324.In R. R. Sharitz and J. W. Gibbons (eds.) Freshwater Wetlands and Wildlife. DOE Symposium Series No. 61, USDOE Office of Scientific and Technical Information, Oak Ridge, TN, USA.Google Scholar
  16. Hosseini, S. M. and A. G. van der Valk. 1989b. The impact of prolonged, above-normal flooding on metaphyton in a freshwater marsh. p. 317–324.In R. R. Sharitz and J. W. Gibbons (eds.) Freshwater Wetlands and Wildlife. DOE Symposium Series. No. 61, USDOE Office of Scientific and Technical Information, Oak Ridge, TN, USA.Google Scholar
  17. Kadlec, J. A. 1986. Effects of flooding on dissolved and suspended nutrients in small diked marshes. Canadian Journal of Fisheries and Aquatic Science 43:1999–2008.CrossRefGoogle Scholar
  18. Keough, J. R., M. E. Sierszen, and C. A. Hagley. 1996. Analysis of a Lake Superior coastal food web with stable isotope techniques. Limnology and Oceanography 41:136–146.CrossRefGoogle Scholar
  19. Marker, A. F. H., C. A. Crowther, and R. J. M. Gunn. 1980. Methanol and acetone for estimating chlorophylla and phaeopigments by spectrophotometry. Archiv für Hydrobiologie Beihefte 14:52–69.Google Scholar
  20. McDougal, R. L., L. G. Goldsborough, and B. J. Hann. 1997. Responses of a prairie wetland to press and pulse additions of inorganic nitrogen and phosphorus: production by planktonic and benthic algae. Archiv für Hydrobiologie (in press).Google Scholar
  21. Meijer, M. A., M. W. deHaan, A. W. Breukelaar, and H. Buiteveld. 1990. Is reduction of the benthivorous fish an important cause of high transparency following biomanipulation in shallow lakes? Hydrobiologia 200/201:303–315.CrossRefGoogle Scholar
  22. Mitsch, W. J. and J. G. Gosselink. 1993. Wetlands, 2nd ed. Van Nostrand Reinhold, New York, NY, USA.Google Scholar
  23. Mitsch, W. J. and B. C. Reeder. 1991. Modelling nutrient retention of a freshwater coastal wetland: estimating the roles of primary productivity, sedimentation, resuspension and hydrology. Ecological Modeling 54:151–187.CrossRefGoogle Scholar
  24. Murkin, H. R., B. D. J. Batt, P. J. Caldwell, C. B. Davis, J. A. Kadlec, and A. G. van der Valk. 1984. Perspectives on the Delta Waterfowl Research Station—Ducks Unlimited Canada Marsh Ecology Research Program. Transactions of the North American Wildlife Research Conference 49:253–261.Google Scholar
  25. Murkin, H. R., J. B. Pollard, M. P. Stainton, J. A. Boughen, and R. D. Titman. 1994. Nutrient additions to wetlands in the interlake region of Manitoba, Canada: effects of periodic additions throughout the growing season. Hydrobiologia 280:483–495.CrossRefGoogle Scholar
  26. Neely, R. K. 1994. Evidence for positive interactions between epiphytic algae and heterotrophic decomposers during the decomposition ofTypha latifolia. Archiv für Hydrobiologie 129:443–457Google Scholar
  27. Neill, C. and J. C. Cornwell. 1992. Stable carbon, nitrogen, and sulfur isotopes in a prairie marsh food web. Wetlands 12:217–224.Google Scholar
  28. Phillips, G. L., D. Eminson, and B. Moss. 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquatic Botany 4:103–126.CrossRefGoogle Scholar
  29. Robinson, G. G. C., S. E. Gurney, and L. G. Goldsborough. 1997. The primary production of benthic and planktonic algae in a prairie wetland under controlled water-level regimes. Wetlands 17: 182–194.Google Scholar
  30. Ross, L. C. M. and H. R. Murkin. 1993. The effect of above-normal flooding of a northern prairie marsh onAgraylea multipunctata Curtis (Trichoptera: Hydroptilidae). Journal of Freshwater Ecology 8:27–35.Google Scholar
  31. Schalles, J. E. and D. J. Shure. 1989. Hydrology, community structure, and productivity patterns of a dystrophic Carolina Bay wetland. Ecological Monographs 59:365–385.CrossRefGoogle Scholar
  32. Shamess, J. J., G. G. C. Robinson, and L. G. Goldsborough. 1985. The structure and comparison of periphytic and planktonic algal communities in two eutrophic prairie lakes. Archiv für Hydrobiologie 103:99–116.Google Scholar
  33. Statistical Analysis System (SAS) Institute Inc. 1985 SAS/Stat Guide for Personal Computers, Version 6 Edition. SAS Institute, Cary, NC, USA.Google Scholar
  34. Sullivan, M. J. and C. A. Moncreiff. 1990. Edaphic algae are an important component of salt marsh food-webs: evidence from multiple stable isotope analyses. Marine Ecology Progress Series 62:149–159.CrossRefGoogle Scholar
  35. Turner, M. A., G. G. C. Robinson, B. E. Townsend, B. J. Hann, and J. A. Amaral. 1995. Ecological effects of blooms of filamentous green algae in the littoral zone of an acid lake. Canadian Journal of Fisheries and Aquatic Science 52:2264–2275.CrossRefGoogle Scholar
  36. van der Valk, A. G. 1986. The impact of litter and annual plants on recruitment from the seed bank of a lacustrine wetland. Aquatic Botany 24:13–26.CrossRefGoogle Scholar
  37. van der Valk, A. G. 1994. Effects of prolonged flooding on the distribution and biomass of emergent species along a freshwater wetland coenocline. Vegetatio 110:185–196.CrossRefGoogle Scholar
  38. van der Valk, A. G. and C. B. Davis. 1978. The role of seed banks in the vegetation dynamics of prairie glacial marshes. Ecology 59: 322–335.CrossRefGoogle Scholar
  39. van der Valk, A. G., L. Squires, and C. H. Welling. 1994. Assessing the impacts of an increase in water level on wetland vegetation. Ecological Application 4:525–534.CrossRefGoogle Scholar
  40. Vymazal, J. 1994. Algae and Element Cycling in Wetlands. Lewis Publishers. Boca Raton, FL, USA.Google Scholar
  41. Wrubleski, D. A. 1987. Chironomidae (Diptera) of peatlands and marshes in Canada. p. 141–161In D. A. Wrubleski and H. U. Danks (eds.) Aquatic Insects of Peatlands and Marshes in Canada. Memoirs of the Entomological Society of Canada, No. 140.Google Scholar

Copyright information

© Society of Wetland Scientists 1997

Authors and Affiliations

  • Gordon G. C. Robinson
    • 1
  • Sharon E. Gurney
    • 2
  • L. Gordon Goldsborough
    • 3
  1. 1.Department of BotanyUniversity of ManitobaWinnipegCanada
  2. 2.Manitoba EnvironmentWinnipegCanada
  3. 3.University Field Station (Delta Marsh) and Department of BotanyUniversity of ManitobaWinnipegCanada

Personalised recommendations