Advertisement

Wetlands

, Volume 16, Issue 1, pp 45–65 | Cite as

Multiple limiting gradients in peatlands: A call for a new paradigm

  • Scott D. Bridgham
  • John Pastor
  • Jan A. Janssens
  • Carmen Chapin
  • Thomas J. Malterer
Article

Abstract

Peatlands often have readily apparent gradients of plant species distributions, biogeochemistry, and hydrology across several spatial scales. Many inferences have been drawn about the colinearity of these gradients, and these assumptions have become ingrained in the terminology that describes and classifies peatlands. We review the literature and present some of our own data that show that many of these inferences are either wrong or correct only under a limited set of ecological conditions. We examine historical classification schemes of peatlands and, in this context, gradients of alkalinity, pH, nutrient availability for plant growth, nutrient mineralization, hydrology, and decomposition. We further suggest a strictly defined set of terms to describe separate gradients of hydrology, alkalinity, and nutrients that limit plant growth in peatlands. Specifically, we make the following suggestions concerning terminology. (1) The suffix “-trophic” should only be used when referring to nutrients that directly limit plant growth at natural availabilities (e.g., eutrophic and oligotrophic). (2) Terms such as circumneutral, moderately acid, and very acidic (or alternatively strong, intermediate, and weak) should be used to describe the pH of peatlands. (3) Ombrogenous and geogenous (or limnogenous, topogenous, and soligenous) should be used to describe the hydrology of peatlands. (4) The terms bog and fen should be defined broadly based on water/soil chemistry and dominant plant species without accompanying assumptions regarding hydrology, topography, ontogeny, nutrient availability, or the presence or absence of nondominant indicator plant species. Better yet, the generic term peatland be used when possible to avoid confusion about conditions that may or may not be present at a particular site.

Key Words

peatlands multiple limiting gradients pH alkalinity nutrients hydrology plant species distributions decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aerts, R., B. Wallén, and N. Malmer. 1992. Growth-limiting nutrients inSphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. Journal of Ecology 80:131–140.Google Scholar
  2. Aiton, W. 1811. Treatise on the Origin, Qualities, and Cultivation of Moss-Earth, with Directions for Converting it into Manure. Wilson and Paul, Air, Great Britain.Google Scholar
  3. Baker, R. G. E. and D. J. Boatman. 1990. Sorme effects of nitrogen, phosphorus, potassium and carbon dioxide concentration on the morphology and vegetative reproduction ofSphagnum cuspidatum Ehrh. New Phytologist 116:605–611.Google Scholar
  4. Bartsch, I. and C. Schwintzer. 1994. Growth ofChamaedaphne calyculata at two peatland sites in relation to nutrient availability. Wetlands 14:147–158.CrossRefGoogle Scholar
  5. Boatman, D. J. and P. M. Lark. 1971. Inorganic nutrition of the protonemata ofSphagnum papillosum Lindb.,S. magellanicum Brid. andS. cuspidatum Ehrh. New Phytologist 70:1053–1059.Google Scholar
  6. Boelter, D. H. and E. S. Verry. 1977. Peatland and water in the northern Lake States. North Central Forest Experimental Station, Forest Service, U.S. Department of Agriculture, St. Paul, MN, USA. USDA Forest Service General Technical Report NC-31.Google Scholar
  7. Botch, M. S. and V. V. Masing. 1983. Mire ecosystems in the USSR. p. 95–152.In A. J. P. Gore (ed.) Mires: Swamp. Bog. Fen and Moor. Ecosystems of the World, 4A. Elsevier, New York, NY, USA.Google Scholar
  8. Boyer, M. L. H. and B. D. Wheeler. 1989. Vegetation patterns in spring-fed calcareous fens: calcite precipitation and constraints on fertility. Journal of Ecology 77:597–609.Google Scholar
  9. Bridgham, S. D. 1991. Mechanisms controlling soil carbon cycling in North Carolina peatlands. Ph.D. Dissertation. Duke University, Durham, NC, USA.Google Scholar
  10. Bridgham, S. D., C. A. Johnston, J. Pastor, and K. Updegraff. 1995a Potential feedbacks of northern wetlands on climate change. BioScience 45:262–274.Google Scholar
  11. Bridgham, S. D., C. J. Pastor, C. A. McClaugherty, and C. J. Richardson. 1995b. Nutrient-use efficiency: a litterfall index, a model, and a test along a nutrient-availability gradient in North Carolina peatlands. American Naturalist 145:1–21.Google Scholar
  12. Bridgham, S. D., C. J. Richardson, E. Maltby, and S. P. Faulkner 1991. Cellulose decay in natural and disturbed peatlands in North Carolina. Journal of Environmental Quality 20:695–701.CrossRefGoogle Scholar
  13. Bridgham, S. D. and C. J. Richardson. 1992. Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands. Soil Biology and Biochemistry 24:1089–1099.Google Scholar
  14. Bridgham, S. D. and C. J. Richardson. 1993. The biogeochemistry of North Carolina freshwater peatlands: hydrology and nutrient gradients. Wetlands 13:207–218.CrossRefGoogle Scholar
  15. Chapin, C. and J. Pastor. 1994. Nutrient limitations of the northern pitcher plantSarracenia purpurea. Canadian Journal of Botany 73:728–734.Google Scholar
  16. Chapin III, E. S. 1980. The mineral nutrition of wild plants. Annual Review of Ecology and Systematics 11:233–260.Google Scholar
  17. Chapin III, F. S., L. Moilanen, and K. Kielland. 1993. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361:150–153.Google Scholar
  18. Christensen, N., R. Burchell, A. Liggett, and E. Simms. 1981. The structure and development of pocosin vegetation. p. 43–61.In C. J. Richardson (ed.) Pocosin Wetlands. Hutchinson Ross, Stroudsburg, PA, USA.Google Scholar
  19. Clymo, R. S. 1983. Peat. p. 159–224.In A. J. Gore (ed.) Mires: Swamp, Bog, Fen and Moor. Elsevier, New York, NY, USA.Google Scholar
  20. Clymo, R. S. 1984. The limits of peat bog growth. Philosophical Transactions of the Royal Society of London Biological Sciences 303:605–654.Google Scholar
  21. Clymo, R. S. 1987. Interactions ofSphagnum with water and air. p. 513–528.In T.C. Hutchinson and K. M. Mleema (eds.) Effects of Atmospheric Pollutants on Forests, Wetlands, and Agricultural Ecosystems. Springer-Verlag, Berlin, Germany.Google Scholar
  22. Clymo, R. S. 1992. Models of peat growth. Suo 43:127–136.Google Scholar
  23. Clymo, R. S. and P. M. Hayward. 1982. The ecology ofSphagnum. p. 229–289.In A.J.E. Smith (ed.) Bryophyte Ecology. Chapman and Hall, London, Great Britain.Google Scholar
  24. Cowardin, L. M., V. Carter, F. C. Golet, and E. T. LaRoc. 1979. Classification of wetlands and deepwater habitats of the United States. U. S. Fish and Wildlife Service, Deparmtent of the Interior, Washington, DC, USA. FWS/OBS-79/31.Google Scholar
  25. Crum, H. A., W. C. Steere, and L. E. Anderson. 1973. A new list of mosses of North America north of Mexico. Bryologist 76:85–130.Google Scholar
  26. Damman, A. W. H. 1986. Hydrology, development, and biogeochemistry of ombrogenous peat bogs with special reference to nutrient relocation in a western Newfoundland bog. Canadian Journal of Botany 64:384–394.Google Scholar
  27. Damman, A. W. H. 1988. Japanese raised bogs: their special position within the Holarctic with respect to vegetation, nutrient status and development. Veroeffentlichungen des Geobotanischen Institutes der Eidgenoessische Technische Hochschule Stiftung Ruebel in Zuerich 98:330–353.Google Scholar
  28. Damman, A. W. H. 1990. Nutrient status of ombrotrophic peat bogs. Aquilo Ser Botanica 28:5–14.Google Scholar
  29. Daniels, R. E. 1978. Floristic analyses of British mires and mire communities. Journal of Ecology 66:773–802.Google Scholar
  30. Dau, H. C. 1823. Neues Handbuch über den Torf, dessen Natur, Entstehung und Wiedererzeugang. Leipzig, Germany.Google Scholar
  31. Du Rietz, E. 1949. Huvudenheter och huvudgränser i Svensk myrvegetation. Svensk Botanisk Tidskrift 43:274–309.Google Scholar
  32. Du Rietz, E. 1954. Die mineralbodenwasserzegergrenze als Grundlage einer naturlichen Zweigleiderung der nord-und mitteleuropaischen Moore. Vegetatio 5–6:571–585.Google Scholar
  33. Erickson, H. E. 1994. Nitrogen and phosphorus availability, ecosystem processes, and plant community dynamics in boreal wetland meadows. Ph.D. Dissertation. University of Washington, Seattle, WA, USA.Google Scholar
  34. Gardetto, P.E. 1987. Nutrient limitation and the accumulation of added nitrogen and phosphorus inSphagnum fuscum. M.S. Thesis Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul. MN, USA.Google Scholar
  35. Gauthier, R. and M. M. Grandtner 1975. Étude phytosociologique des tourbiéres du Bas Saint-Laurent, Québec. Naturaliste Canadien 102:109–153.Google Scholar
  36. Glaser, P. H. 1987. The Ecology of Patterned Boreal Peatlands of Northern Minnesota: a Community Profile. U.S. Fish and Wildlife Service, Washington, DC, USA. Report 85(7.14).Google Scholar
  37. Glaser, P. H. and J. A. Janssens. 1986. Raised bogs in eastern North America: transitions in landforms and gross stratigraphy. Canadian Journal of Botany 64:395–415.Google Scholar
  38. Glaser, P. H., G. A. Wheeler, E. Gorham, and H. E. Wright Jr. 1981. The patterned mires of the Red Lake peatland, northern Minnesota: vegetation, water chemistry and landforms. Journal of Ecology 69:575–599.Google Scholar
  39. Goodman, G. T. and D. F. Perkins. 1968. The role of mineral nutrients inEriophorum communities. IV. Potassium is a limiting factor in anE. vaginatum community. Journal of Ecology 56:685–696.Google Scholar
  40. Gore, A. J. P. 1961a. Factors limiting plant growth on high-level blanket peat. I. Calcium and phosphate. Journal of Ecology 49: 399–402.Google Scholar
  41. Gore, A. J. P. 1961b. Factors limiting plant growth on high-level blanket peat. II. Nitrogen and phosphate in the first year of growth. Journal of Ecology 49:605–616.Google Scholar
  42. Gore, A. J. P. 1983. Introduction. p. 1–34.In A. J. P. Gore (ed.) Mires: Swamp, Bog. Fen and Moor. Ecosystems of the World, 4A. Elsevier, New York, NY, USA.Google Scholar
  43. Gorham, E. 1950 Variation in some chemical conditions along the borders of aCarex lasiocarpa fen community. Oikos 2:217–240.Google Scholar
  44. Gorham, E. 1953. Some early ideas concerning the nature, origin and development of peat lands. Journal of Ecology 41:257–274.Google Scholar
  45. Gorham, E. 1957. The development of peat lands. Quarterly Review of Biology 32:145–165Google Scholar
  46. Gorham, E., S. J. Eisenreich, J. Ford, and M. V. Santelman. 1985. The chemistry of bog waters, p. 339–363.In W. Stumm (ed.) Chemical Processes in Lakes. Wiley, New York, NY, USA.Google Scholar
  47. Gorham, E. and J. A. Janssens. 1992. Concepts of fen and bog reexamined in relation to bryophyte cover and the acidity of surface waters. Acta Societatis Botanicorum Poloniae 61:7–20.Google Scholar
  48. Grootjans, A. P., R. van Diggelen, M. J. Wassen, and W. A. Wiersinga. 1988. The effects of drainage on groundwater quality and plant species distribution in stream valley meadows. Vegetatio 75: 37–48.Google Scholar
  49. Halliday, G., and M. Beadle. 1983. Flora Europaea. Cambridge University Press, Cambridge, Great Britain.Google Scholar
  50. Ingestad, T. 1973. Mineral nutrient requirements ofVaccinium vitis idaea andV. myrtillus. Physiologia Plantarum 29:239–246.Google Scholar
  51. Ingestad, T. 1987. New concepts on soil fertility and plant nutrition as illustrated by research on forest trees and stands. Geoderma 40: 237–252.Google Scholar
  52. Ingram, H. A. P. 1982. Size and shape in raised mire ecosystems: a geophysical model. Nature 297:300–303.Google Scholar
  53. Janssens, J. A. 1992. Bryophytes. p. 43–57.In H. E. Wright Jr. B. A. Coffin, and N. E. Aaseng (eds.) The Patterned Peatlands of Minnesota. University of Minnesota Press. Minneapolis, MN. USA.Google Scholar
  54. Johnson, L. C. and A. W. Damman. 1991. Species-controlledSphagnum decay on a south Swedish raised bog. Oikos 61:234–242.Google Scholar
  55. Kemmers, R. H. 1986. Calcium as hydrochemical characteristic for ecological states. Ekológia (USSR) 5:271–282.Google Scholar
  56. Kinzel, H. 1983. Influence of limestone, silicates and soil pH on vegetation. p. 201–244.In O. L. Lange, P. S. Nobel, C. B. Osmond, and H. Ziegler (eds.) Physiological Plant Ecology III: Responses to the Chemical and Biological Environment. Springer Verlag, Berlin, Germany.Google Scholar
  57. Koch, M. S. and K. R. Reddy. 1992. Distribution of soil and plant nutrients along a trophic gradient in the Florida Everglades. Soil Science Society of America Journal 56:1492–1499.CrossRefGoogle Scholar
  58. Kooijman, A. M. and C. Bakker 1993. Causes of the replacement ofScorpidium scorpioides byCalliergonella cuspidata in eutrophicated rich feas. Lindbergia 18:123–130.Google Scholar
  59. Kooijman, A. M. and C. Bakker. Species replacement in the bryophyte layer in mires: the role of water type, nutrient supply and interspecific interactions. Journal of Ecology 83:1–8.Google Scholar
  60. Kulezynski, S. 1949. Peat bogs of Polesie. Memoires de l’Academie Polonais de Sciences et Lettres Série 15:1–356.Google Scholar
  61. Lee, J. A., M. C. Press, S. Woocin, and P. Ferguson, 1987. Responses to acidic ceposition in ombrotrophic mitres in the U. K. p. 549–560.In T. C. Hutchinson and K. M. Mleema (eds.) Effects of Atmospheric Pollutants on Forests, Wetlands, and Agricultural Ecosystems. Springer-Verlag, Berlin, Germany.Google Scholar
  62. Lucas, R. E. and J. F. Davis 1961. relationships between pH values of organic soils and availabilities of 12 plant nutrients. Soil Science 92:177–182.Google Scholar
  63. MacCarthy, R. and C. B. Davey. 1976. Nutritional problems ofPinus taeda L. (Loblolly Pine) growing on pocosin soil. Soil Science Society of America Journal 40:582–585.CrossRefGoogle Scholar
  64. Malmer, N. 1986. Vegetational gradients in relation to environmental conditions in northwestern European mires. Cannadian Journal of Botany 64:375–383.Google Scholar
  65. Malmer, N. 1988. Patterns in the growth and the accumulation of inorganic constituents in theSphagnum cover on ombrotrophic bogs in Scandinavia. Oikos 53:105–120.Google Scholar
  66. Malmer, N. 1993. Mineral nutrients in vegetation and surface layers ofSphagnum-dominated peat-forming systems. Advances in Bryology 5:223–248.Google Scholar
  67. Malmer, N. and H. Sjörs. 1955. Some determinations of elementary constituents in mire plants and peat. Botaniska Notiser 108:46–80.Google Scholar
  68. Matthews, E. and I. Fung. 1987. Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Global Biogeochemical Cycles 1:61–86.Google Scholar
  69. McVean, D. N. 1959. Ecology ofAlnus glutinosa (L.) Gaertn. VII. Establishment of alder by direct seeding of shallow blanket bog. Journal of Ecology 47:615–618.Google Scholar
  70. McVean, D. N. and D. A. Ratcliffe. 1962. Plant Communities of the Scottish Highlands: A Study of Scottish Mountain, Moorland and Forest Vegetation. Monographs of the Nature Conservancy, London, Great Britain.Google Scholar
  71. Melin, E. 1917. Studier över de Noorländska Handbibl. 7. Upsala, Sweden.Google Scholar
  72. Mitsch, W. J. and J. G. Gosselink 1993. Wetlands. Van Nostrand Reinhold, New York, NY, USA.Google Scholar
  73. Moore, P. D. 1989. The ecology of peat-forming processes: a review. International Journal of Coal Geology 12:89–103.Google Scholar
  74. Moore, P. D. and D. J. Bellamy, 1974. Peatlands. Springer-Verlag, New York, NY, USA.Google Scholar
  75. Mugasha, A. G., D. J. Pluth, and G. R. Hillman. 1993. Foliar response of tamarack and black spruce to drainage and fertilization of a minerotrophic peatland. Canadian Journal of Forest Research 23:166–180.Google Scholar
  76. Naismith, J. 1807. An essay on peat, its properties and uses. Transactions of the Highland Society of Scotland 3:17.Google Scholar
  77. National Wetlands Working Group 1988. Wetlands of Canada. Ecological Land Classification Series, No. 24. Sustainable Development Branch Environment Canada. Ontario, and Polyscience Publications. Montreal, Quebec, Canada.Google Scholar
  78. Osvald, H. 1925. Die hochmoortypen Europas. Veroeffentlichungen des Geobotanischen Institutes der Eidgenoessische. Technische Hochschule Stiftung Ruebel in Zuerich 3:707–723.Google Scholar
  79. Pakarinen, P. and K. Tolonen. 1977. Nutrient contents ofSphagnum mosses in relation to bog water chemistry in northern Finland. Lindbergia 4:27–33.Google Scholar
  80. Press, M. C., S. J. Woodin, and J. A. Lee. 1986. The potential importance of an increased atmospheric nitrogen supply to the growth of ombrotrophicSphagnum species. New Phytologist 103: 45–55.Google Scholar
  81. Proctor, M. C. F. 1992. Regional and local variation in the chemical composition of ombrogenous mire waters in Britain and Ireland. Journal of Ecology 80:719–736.Google Scholar
  82. Radford, A. E., H. E. Ahles, and C. R. Bell. 1968. Manual of the Vascular Flora of the Carolinas. University of North Carolina Press, Chapel Hill, NC, USA.Google Scholar
  83. Radforth, N. W. 1969. Classification of muskeg. p. 31–52.In C. MacFarlane (ed.) Muskeg Engineering Handbook. University of Toronto Press, Toronto, Ontario, Canada.Google Scholar
  84. Richardson, C. J. and P. E. Marshall. 1986. Processes controlling movement, storage, and export of phosphorus in a fen peatland. Ecological Monographs 56:279–302.Google Scholar
  85. Rochefort, L., D. H. Vitt, and S. E. Bayley. 1990. Growth, production, and decomposition dynamics ofSphagnum under natural and experimentally acidified conditions. Ecology 71:1986–2000.Google Scholar
  86. Rudolph, H. and J. U. Voigt. 1986. Effects of NH4-N and NO3-N on growth and metabolism ofSphagnum magellanicum. Physiologia Plantarum 66:339–343.Google Scholar
  87. Runge, M. 1983. Physiology and ecology of nitrogen nutrition. p. 163–200.in O. L. Lange, P. S. Nobei, C. B. Osmond, and H. Ziegler (eds.) Physiological Plant Ecology III: Responses to the Chemical and Biological Environment. Springer Verlag, Berlin, Germany.Google Scholar
  88. Rydin, H. 1985. Effect of water level of desiccation ofSphagnum in relation to surroundingSphagna. Oikos 45:374–379.Google Scholar
  89. Rydin, H. and R. S. Clymo. 1989. Transport of carbon and phosphorus compounds aboutSphagnum. Proceedings of the Royal Society of London 237:63–84.Google Scholar
  90. Shaver, G. R. and F. S. Chapin III. 1980. Response to fertilization by various plant growth forms in an Alaskan tundra: nutrient accumulation and growth. Ecology 61:662–675.Google Scholar
  91. Shaver, G. R. and J. M. Melillo. 1984. Nutrient budgets of marsh plants: efficiency concepts and relation to availability. Ecology 65: 1491–1510.Google Scholar
  92. Siegel, D. I. 1983. Groundwater and the evolution of patterned mires, Glacial Lake Agassiz Peatlands, northern Minnesota. Journal of Ecology 71:913–921.Google Scholar
  93. Siegel, D. I. 1987. A review of recharge-discharge function of wetlands. p. 59–66.In D. D. Hook (ed.) The Ecology and Management of Wetlands, Vol. 1: Ecology of Wetlands. Croom Helm, London, Great Britain.Google Scholar
  94. Siegel, D. I. 1988a. The recharge-discharge function of wetlands near Juneau, Alaska: Part I. Hydrologic investigations. Journal of Groundwater 26:427–434.Google Scholar
  95. Siegel, D. I. 1988b. The recharge-discharge function of wetlands near Juneau, Alaska: Part II. Geochemical investigations. Journal of Groundwater 26:580–596.Google Scholar
  96. Siegel, D. I. and P. H. Glaser, P. H. 1987. Groundwater flow in a bog-fen complex, Lost River Peatland, northern Minnesota. Journal of Ecology 75:743–754.Google Scholar
  97. Simms, E. L. 1987. The effect of nitrogen and phosphorus additions on the growth, reproduction, and nutrient dynamics of two ericaceous shrubs. Oecologia 71:541–547.Google Scholar
  98. Sjörs, H. 1948. Myrvegetation i bergslagen. Acta Phytogeographica Suecica 21:1–299.Google Scholar
  99. Sjörs, H. 1950. On the relation between vegetation and electrolytes in north Swedish mire waters. Oikos 2:241–257.Google Scholar
  100. Sjörs, H. 1961. Surface patterns in boreal peatlands. Endeavor 20: 217–224.Google Scholar
  101. Skre, O. and W. C. Oechel 1979. Moss production in a black sprucePicea mariana forest with permafrost near Fairbanks, Alaska, as compared with two permafrost-free stands. Holarctic Ecology 2: 249–254.Google Scholar
  102. Swanson, D. K. and D. F. Grigal 1991. Biomass, structure, and trophic environment of peatland vegetation in Minnesota. Wetlands 11:279–302.Google Scholar
  103. Tamm, C. O. 1954. Some observations on the nutreitn turnover in a bog community dominanted byEriophorum vaginatum L. Oikos 5:189–194.Google Scholar
  104. Tansley, A. G. 1939. The British Isles and their Vegetation. Cambridge University Press (republished as second edition in 1953) Cambridge, Great Britain.Google Scholar
  105. Tilman, D. 1988. Plant Strategies and the Structure and Dynamics of Plant Communities. Princeton University Press, Princeton, NJ, USA.Google Scholar
  106. Timmer, V. R. and E. L. Stone 1978. Comparative analysis of young balsam fir fertilized with nitrogen, phosphorus, potassium, and lime. Soil Science Society of America Journal 42:125–130.Google Scholar
  107. Updegraff, K., S. D. Bridghan, J. Pastor, and C. A. Johnston 1994. A method to determine long-term anaerobic carbon and nutrient mineralization in soils. p. 209–219.In J. W. Doran, D. C. Coleman, D. F. Bezdicek, and B. A. Stewart (eds.) Defining Soil Quality for a Sustainable Environment. Soil Science Society of America, Madison, WI, USA.Google Scholar
  108. Updegraff, K., J. Paster, S. D. Bridgham, and C. A. Johnston. 1995. Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. Ecological Applications 5: 151–163.Google Scholar
  109. Urban, N. R., S. J. Eisenreich, and S. E. Bayley. 1988. The relative importance of denitrification and nitrate assimilation in midcontinental bogs. Limnology and Oceanography 33:1611–1617.Google Scholar
  110. Urban, N. R., S. J. Eisenreich, and E. Gorham. 1987. Proton cycling in bogs: geographic variation in northeastern North America. p. 577–598.In T. C. Hutchinson and K. M. Mleema (eds.) Effects of Atmospheric Pollutants on Forests, Wetlands, and Agricultural Ecosystems. Springer-Verlag, Berlin, Germany.Google Scholar
  111. Valentine, D. W., E. A. Holland, and D. S. Schimel. 1994. Ecosystem and physiological controls over methane production in northern wetlands. Journal of Geophysical Research 99:1563–1571.Google Scholar
  112. van der Valk, A. G. 1981. Succession in wetlands: a Gleasonian approach. Ecology 62:688–696.Google Scholar
  113. Veerkamp, M. T., W. J. Corre, B. J. Atwell, and P. J. C. Kuiper. 1980. Growth rate and phosphate utilization of someCarex species from a range of oligotrophic to eutrophic swamp habitats. Physiologia Plantarum 50:237–240.Google Scholar
  114. Verhoeven, J. T. A. and H. H. M. Arts. 1987. Nutrient dynamics in small mesotrophic fens surrounded by cultivated land: II. N and P accumulation in plant biomass in relation to the release of inorganic N and P in the peat soil. Oecologia 72:557–561.Google Scholar
  115. Verhoeven, J. T. A., E. Maltby, and M. B. Schmitz. 1990. Nitrogen and phosphorus mineralization in fens and bogs. Journal of Ecology 78:713–726.Google Scholar
  116. Verhoeven, J. T. A. and M. B. Schmitz. 1991. Control of plant growth by nitrogen and phosphorus in mesotrophic fens. Biogeochemistry 12:135–148.Google Scholar
  117. Vermeer, H. J. G. 1986. The effect of nutrients on shoot biomass and species composition of wetland and hayfield communities. Acta Oecologica Oecologia Plantarum 7:31–41.Google Scholar
  118. Verry, E. S. In Press. Hydrological processes of natural, northern forested wetlands. In C. C. Trettin et al. (eds.) Ecology and Management: Forested Wetlands, CRC Press, Boca Raton, FL, USA.Google Scholar
  119. Witt, D. H. and W.-L. Chee. 1990. The relationships of vegetation to surface water chemistry and peat chemistry in fens of Alberta, Canada, Vegetatio 89:87–106.Google Scholar
  120. Vitt, D. H. and P. Kuhry. 1992. Changes in moss-dominated wetland ecosystems. p. 178–210.In J. W. Bates and A. M. Farner (eds.) Bryophytes and Lichens in a Changing Environment. Clarendon, Oxford, Great Britain.Google Scholar
  121. von Post, L. and E. Granlund. 1926. Södra sveriges torvtillgängar. Sveriges Geologiska Undersokning Arsbok Series C Avhandlingar och Uppsatser, No. 335.Google Scholar
  122. Walbridge, M. R. 1991. Phosphorus availability in acid organic soils of the Lower North Carolina Coastal Plain. Ecology 72: 2083–2109.Google Scholar
  123. Wassen, M. J., A. Barendregt, M. C. Bootsma, and P. P. Schot. 1989. Groundwater chemistry and vegetation of gradients from rich fen to poor fen in the Naardermeer (The Netherlands). Vegetatio 79: 117–132.Google Scholar
  124. Wassen, M. J., A. Barendregt, P. P. Schot, and B. Beltman. 1990. Dependence of local mesotrophic fens on a regional groundwater flow system in a poldered river plain in the Netherlands. Landscape Ecology 5:21–38.Google Scholar
  125. Wassen, M. J. and A. Barendregt. 1992. Topographic position and water chemistry of fens in a Dutch river plain. Journal of Vegetation Science 3:447–456.Google Scholar
  126. Watt, R. F. 1966. Growth of black spruce stands after fertilization treatments based on foliar analysis. Society of American Forestry 1966 Proc.: 85–88.Google Scholar
  127. Waughman, G. J. 1980. Chemical aspects of the ecology of some south German peatlands. Journal of Ecology 68:1025–1046.Google Scholar
  128. Weber, C. A. 1908. Aufbau und vegetation der Moore Norddeutschlands. Englers Botanisches Jahrbuch 90 (Suppl.):19–34.Google Scholar
  129. Wheeler, B. D. 1980. Plant communities of rich-fen systems in England and Wales. II. Communities of calcareous mires. Journal of Ecology 68:405–420.Google Scholar
  130. Wheeler, G. A., P. H. Glaser, E. Gorham, C. M. Wetmore, F. D. Bowers, and J. A. Janssens. 1983. Contributions to the flora of the Red Lake Peatlands, northern Minnesota, with special attention toCarex. American Midland Naturalist 110:62–96.Google Scholar
  131. Whittaker, R. H. 1967. Gradient analysis of vegetation. Biological Reviews 42:207–264.PubMedGoogle Scholar
  132. Wilbur, R. B. and N. L. Christensen. 1983. Effects of fire on nutrient availability in a North Carolina coastal plain pocosin. American Midland Naturalist 110:54–61.Google Scholar
  133. Wilcox, D. A., R. J. Shedlock, and W. H. Hendrickson. 1986. Hydrology, water chemistry, and ecological relations in the raised mound of Cowles Bog. Journal of Ecology 74:1103–1117.Google Scholar
  134. Wilson, K. A. and A. H. Fitter. 1984. The role of phosphorus in vegetational differentiation in a small valley mire. Journal of Ecology 72:463–473.Google Scholar
  135. Woodwell, G. M. 1958. Factors controlling growth of pond pine seedlings in organic soils of the Carolinas. Ecological Monographs 28:219–236.Google Scholar
  136. Zoltai, S. C. 1988. Wetland environments and classification. p. 1–26.In National Wetlands Working Group, Wetlands of Canada. Ecological Land Classification Series, No. 24, Sustainable Development Branch, Environment Canada, Ontario, and Polyscience Publications Inc., Montreal, Quebec, Canada.Google Scholar

Copyright information

© Society of Wetland Scientists 1996

Authors and Affiliations

  • Scott D. Bridgham
    • 1
  • John Pastor
    • 2
  • Jan A. Janssens
    • 3
  • Carmen Chapin
    • 1
  • Thomas J. Malterer
    • 2
  1. 1.Department of Biological SciencesUniversity of Notre DameNotre Dame
  2. 2.Natural Resources Research InstituteUniversity of MinnesotaDuluth
  3. 3.Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. Paul

Personalised recommendations