Skip to main content
Log in

Mechanisms of hypoxic and ischemic injury

Use of cell culture models

  • Published:
Molecular and Chemical Neuropathology

Abstract

Cell cultures are useful tools to study the mechanisms involved in cell death following hypoxia or ischemia. By manipulating the extracellular environment, conditions that closely mimic the conditions that are thought to occur in vivo can be produced. These conditions permit study of cell’s reaction to the trauma under specific conditions. Monitoring of the extracellular pH and ionic environment in cell cultures is much easier than in vivo. Further, metabolites produced by injured cells can be quantitated easier from cultures than from tissues in vivo.

Cell cultures have recently been used to examine in detail the neurotoxicity of glutamate. Intracellular Ca2+ increases appear to be involved in the mechanisms of neurotoxic cell death. This Ca2+ entry appears to be through the NMDA receptor’s Ca2+ channel. Ischemic and hypoxic injury produced by mechanisms other than glutamate neurotoxicity appear to involve increases in intracellular Ca2+ by releasing internal Ca2+ stores or by the influx of extracellular Ca2+. This Ca2+ entry may be through voltage-gated channels of the NMDA channel, or may be attributable to membrane perturbations. Through the use of cell cultures, each of the mechanism’s involvement in the injury can be delineated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benveniste H., Drejer J., Schoisboe A., and Diemer N. H. (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracellular microdialysis.J. Neurochem. 43, 1369–1374.

    Article  PubMed  CAS  Google Scholar 

  • Callahan D. J., Engle M. J., and Volpe J. J. (1990) Hypoxic injury to developing glial cells: Protective effect of high glucose.Ped. Res. 27, 186–190.

    Article  CAS  Google Scholar 

  • Chan P. H., Chu L., and Chen S. (1990) Effects of MK-801 on glutamate-induced swelling of astrocytes in primary cell culture.J. Neurosci. Res. 25, 87–93.

    Article  PubMed  CAS  Google Scholar 

  • Choi D. W. (1985) Glutamate neurotoxicity in cortical cell culture is calcium dependent.Neurosci. Lett. 58, 293–297.

    Article  PubMed  CAS  Google Scholar 

  • Choi D. W., Maulucci-Gedde M., and Kriegstein A. R. (1987) Glutamate neurotoxicity in cortical cell culture.J. Neurosci. 7, 357–368.

    PubMed  CAS  Google Scholar 

  • Demediuk P., Saunders R. D., Anderson D. K., Means E. D., and Horrocks L. A. (1985) Membrane lipid changes in laminectomized and traumatized cat spinal cord.Proc. Natl. Acad. Sci. USA 82, 7071–7075.

    Article  PubMed  CAS  Google Scholar 

  • Demediuk P., Daly M. P., and Faden A. I. (1989) Effect of impact trauma on neurotransmitter and nonneurotransmitter amino acids in rat spinal cord.J. Neurochem. 52, 1529–1536.

    Article  PubMed  CAS  Google Scholar 

  • Drejer J., Benveniste H., Diemer N. H., and Schousboe A. (1985) Cellular origin of ischemia-induced glutamate release from brain tissue in vivo and in vitro.J. Neurochem. 45, 145–151.

    Article  PubMed  CAS  Google Scholar 

  • Frandsen A. and Schousboe A. (1991) Dantrolene prevents glutamate cytotoxicity and Ca2+ release from intracellular stores in cultured cerebral cortical neurons.J. Neurochem. 56, 1075–1078.

    Article  PubMed  CAS  Google Scholar 

  • Freese A., DiFiglia M., Koroshetz W. J., Beal M. F., and Martin J. B. (1990) Characterization and mechanism of glutamate neurotoxicity in primary striatal cultures.Brain Res. 521, 254–264.

    Article  PubMed  CAS  Google Scholar 

  • Giffard R. G., Monyer H., and Choi D. W. (1990) Selective vulnerability of cultured cortical glia to injury by extracellular acidosis.Brain Res. 530, 138–141.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg W. J., Kadingo R. M., and Barrett J. N. (1986) Effects of ischemia-like conditions on cultured neurons: Protection by low Na+, low Ca2+ solutions.J. Neurosci. 6, 3144–3151.

    PubMed  CAS  Google Scholar 

  • Goldberg M. P., Pham P. C., and Choi D. W. (1987a) Dextrorphan and dextromethorphan attenuate hypoxic injury in neuronal culture.Neurosci. Lett. 80, 11–15.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg M. P., Weiss J. H., Pham P. C., and Choi D. W. (1987b) N-methyl-D-aspartate receptors mediate hypoxic neuronal injury in cortical culture.J. Pharmacol. Exp. Therapeut. 243, 784–791.

    CAS  Google Scholar 

  • Goldberg M. P., Viseskul V., and Choi D. W. (1988) Phencyclidine receptor ligands attenuate cortical neuronal injury after N1-methyl-d-aspartate exposure or hypoxia.J. Pharmacol. Exp. Therapeut. 245, 1081–1087.

    CAS  Google Scholar 

  • Gregory G. A., Yu A. C. H., and Chan P. H. (1989) Fructose-1,6-bisphospate protects astrocytes from hypoxic damage.J. Cereb. Blood Flow Metab. 9, 29–34.

    PubMed  CAS  Google Scholar 

  • Gregory G. A., Welsh F. A., Yu A. C. H., and Chan P. H. (1990) Fructose-1,6-bisphosphate reduces ATP loss from hypoxic astrocytes.Brain Res. 516, 310–312.

    Article  PubMed  CAS  Google Scholar 

  • Horrocks L. A., Dorman R. V., and Porcellati G. (1984) Fatty acids and phosolipids in brain during ischemia, inCerebral Ischemia, International Congress Series No. 654 (Bes A., Braquet P., Paoletti R., and Siesjö B. K., eds), pp. 221–222, Elsevier, Amsterdam.

    Google Scholar 

  • Ikeda M., Yoshida S., Busto R., Santiso M., and Ginsberg M. D. (1986) Polyphosphoinositides as a probable source of brain free fatty acids accumulated at the onset on ischemia.J. Neurochem. 47, 123–132.

    Article  PubMed  CAS  Google Scholar 

  • Kimelberg H. K., Goderie S. K., Higman S., Pang S., and Waniewski R. A. (1990) Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures.J. Neurosci. 10, 1583–1591.

    PubMed  CAS  Google Scholar 

  • Michaels R. L. and Rothman S. M. (1990) Glutamate neurotoxicity in vitro: Antogonist pharmacology and intracellular calcium concentrations.J. Neurosci. 10, 283–292.

    PubMed  CAS  Google Scholar 

  • Monyer H., Goldberg M. P., and Choi D. W. (1989) Glucose deprivation neuronal injury in cortical culture.Brain Res. 483, 347–354.

    Article  PubMed  CAS  Google Scholar 

  • Morales H. P. and Schousboe A. (1988) Volume regulation in astrocytes: A role for taurine as an osmoeffector.J. Neurosci. Res. 20, 505–509.

    Article  Google Scholar 

  • Murphy E. J., Anderson D. K., Means E. D., and Horrocks L. A. (1989) Pressure induced trauma in ROC-1 oligodendroglial cell cultures.Trans. Am. Soc. Neurochem. 20, 141.

    Google Scholar 

  • Norenberg M. D., Mozes L. W., Gregorios J. B., and Norenberg L. O. B. (1987) Effects of lactic acid on astrocytes in primary culture.J. Neuropathol. Exp. Neurol. 46, 154–166.

    Article  PubMed  CAS  Google Scholar 

  • Panter S. S., Yum S. W., and Faden A. I. (1990) Alteration in extracellular amino acids after traumatic spinal cord injury.Ann. Neurol. 27, 96–99.

    Article  PubMed  CAS  Google Scholar 

  • Phillips H. J. (1973) Dye exclusion tests for cell viability, inTissue Culture Methods and Applications (Kruse P. P., Jr. and Patterson M. K., eds.), pp. 406–408, Academic, New York.

    Google Scholar 

  • Renkawek K. Herbaczynska-Cedro K., and Mossakowski M. J. (1986) The effect of prostacyclin on the morphological and enzymatic properties of CNS cultures exposed to anoxia.Acta Neurol. Scand. 73, 111–118.

    Article  PubMed  CAS  Google Scholar 

  • Rotman B. and Papermaster B. W. (1966) Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters.Proc. Natl. Acad. Sci. USA 55, 134–141.

    Article  PubMed  CAS  Google Scholar 

  • Singh N. P. and Stephens R. E. (1986) A novel technique for viable cell determinations.Stain Tech. 61, 315–318.

    CAS  Google Scholar 

  • Swanson R. A., Yu A. C. H., Chan P. H., and Sharp F. R. (1990) Glutamate increases glycogen content and reduces glucose utilization in primary astrocyte culture.J. Neurochem. 54, 490–495.

    Article  PubMed  CAS  Google Scholar 

  • Weiss J. H., Hartley D. M., Koh J., and Choi D. W. (1990) The calcium channel blocker nifedipine attenuates slow excitatory amino acid neurotoxicity.Science 247, 1474–1477.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S., Inoh S., Asano T., Sano K., Kubota M., Shmazaki H., and Ueta N. (1980) Effect of transient ischemia on free fatty acids and phospholipids in the gerbil brain.J. Neurosurg. 53, 323–331.

    Article  PubMed  CAS  Google Scholar 

  • Yu A. C. H., Gregory G. A., and Chan P. H. (1989) Hypoxia-induced dysfunction and injury of astrocytes in primary cell cultures.J. Cereb. Blood Flow Metab. 9, 20–28.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, E.J., Horrocks, L.A. Mechanisms of hypoxic and ischemic injury. Molecular and Chemical Neuropathology 19, 95–106 (1993). https://doi.org/10.1007/BF03160171

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03160171

Index Entries

Navigation