Mechanisms of hypoxic and ischemic injury

Use of cell culture models
  • Eric J. Murphy
  • Lloyd A. Horrocks


Cell cultures are useful tools to study the mechanisms involved in cell death following hypoxia or ischemia. By manipulating the extracellular environment, conditions that closely mimic the conditions that are thought to occur in vivo can be produced. These conditions permit study of cell’s reaction to the trauma under specific conditions. Monitoring of the extracellular pH and ionic environment in cell cultures is much easier than in vivo. Further, metabolites produced by injured cells can be quantitated easier from cultures than from tissues in vivo.

Cell cultures have recently been used to examine in detail the neurotoxicity of glutamate. Intracellular Ca2+ increases appear to be involved in the mechanisms of neurotoxic cell death. This Ca2+ entry appears to be through the NMDA receptor’s Ca2+ channel. Ischemic and hypoxic injury produced by mechanisms other than glutamate neurotoxicity appear to involve increases in intracellular Ca2+ by releasing internal Ca2+ stores or by the influx of extracellular Ca2+. This Ca2+ entry may be through voltage-gated channels of the NMDA channel, or may be attributable to membrane perturbations. Through the use of cell cultures, each of the mechanism’s involvement in the injury can be delineated.

Index Entries

Neurons astrocytes cell cultures ischemia hypoxia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benveniste H., Drejer J., Schoisboe A., and Diemer N. H. (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracellular microdialysis.J. Neurochem. 43, 1369–1374.PubMedCrossRefGoogle Scholar
  2. Callahan D. J., Engle M. J., and Volpe J. J. (1990) Hypoxic injury to developing glial cells: Protective effect of high glucose.Ped. Res. 27, 186–190.CrossRefGoogle Scholar
  3. Chan P. H., Chu L., and Chen S. (1990) Effects of MK-801 on glutamate-induced swelling of astrocytes in primary cell culture.J. Neurosci. Res. 25, 87–93.PubMedCrossRefGoogle Scholar
  4. Choi D. W. (1985) Glutamate neurotoxicity in cortical cell culture is calcium dependent.Neurosci. Lett. 58, 293–297.PubMedCrossRefGoogle Scholar
  5. Choi D. W., Maulucci-Gedde M., and Kriegstein A. R. (1987) Glutamate neurotoxicity in cortical cell culture.J. Neurosci. 7, 357–368.PubMedGoogle Scholar
  6. Demediuk P., Saunders R. D., Anderson D. K., Means E. D., and Horrocks L. A. (1985) Membrane lipid changes in laminectomized and traumatized cat spinal cord.Proc. Natl. Acad. Sci. USA 82, 7071–7075.PubMedCrossRefGoogle Scholar
  7. Demediuk P., Daly M. P., and Faden A. I. (1989) Effect of impact trauma on neurotransmitter and nonneurotransmitter amino acids in rat spinal cord.J. Neurochem. 52, 1529–1536.PubMedCrossRefGoogle Scholar
  8. Drejer J., Benveniste H., Diemer N. H., and Schousboe A. (1985) Cellular origin of ischemia-induced glutamate release from brain tissue in vivo and in vitro.J. Neurochem. 45, 145–151.PubMedCrossRefGoogle Scholar
  9. Frandsen A. and Schousboe A. (1991) Dantrolene prevents glutamate cytotoxicity and Ca2+ release from intracellular stores in cultured cerebral cortical neurons.J. Neurochem. 56, 1075–1078.PubMedCrossRefGoogle Scholar
  10. Freese A., DiFiglia M., Koroshetz W. J., Beal M. F., and Martin J. B. (1990) Characterization and mechanism of glutamate neurotoxicity in primary striatal cultures.Brain Res. 521, 254–264.PubMedCrossRefGoogle Scholar
  11. Giffard R. G., Monyer H., and Choi D. W. (1990) Selective vulnerability of cultured cortical glia to injury by extracellular acidosis.Brain Res. 530, 138–141.PubMedCrossRefGoogle Scholar
  12. Goldberg W. J., Kadingo R. M., and Barrett J. N. (1986) Effects of ischemia-like conditions on cultured neurons: Protection by low Na+, low Ca2+ solutions.J. Neurosci. 6, 3144–3151.PubMedGoogle Scholar
  13. Goldberg M. P., Pham P. C., and Choi D. W. (1987a) Dextrorphan and dextromethorphan attenuate hypoxic injury in neuronal culture.Neurosci. Lett. 80, 11–15.PubMedCrossRefGoogle Scholar
  14. Goldberg M. P., Weiss J. H., Pham P. C., and Choi D. W. (1987b) N-methyl-D-aspartate receptors mediate hypoxic neuronal injury in cortical culture.J. Pharmacol. Exp. Therapeut. 243, 784–791.Google Scholar
  15. Goldberg M. P., Viseskul V., and Choi D. W. (1988) Phencyclidine receptor ligands attenuate cortical neuronal injury after N1-methyl-d-aspartate exposure or hypoxia.J. Pharmacol. Exp. Therapeut. 245, 1081–1087.Google Scholar
  16. Gregory G. A., Yu A. C. H., and Chan P. H. (1989) Fructose-1,6-bisphospate protects astrocytes from hypoxic damage.J. Cereb. Blood Flow Metab. 9, 29–34.PubMedGoogle Scholar
  17. Gregory G. A., Welsh F. A., Yu A. C. H., and Chan P. H. (1990) Fructose-1,6-bisphosphate reduces ATP loss from hypoxic astrocytes.Brain Res. 516, 310–312.PubMedCrossRefGoogle Scholar
  18. Horrocks L. A., Dorman R. V., and Porcellati G. (1984) Fatty acids and phosolipids in brain during ischemia, inCerebral Ischemia, International Congress Series No. 654 (Bes A., Braquet P., Paoletti R., and Siesjö B. K., eds), pp. 221–222, Elsevier, Amsterdam.Google Scholar
  19. Ikeda M., Yoshida S., Busto R., Santiso M., and Ginsberg M. D. (1986) Polyphosphoinositides as a probable source of brain free fatty acids accumulated at the onset on ischemia.J. Neurochem. 47, 123–132.PubMedCrossRefGoogle Scholar
  20. Kimelberg H. K., Goderie S. K., Higman S., Pang S., and Waniewski R. A. (1990) Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures.J. Neurosci. 10, 1583–1591.PubMedGoogle Scholar
  21. Michaels R. L. and Rothman S. M. (1990) Glutamate neurotoxicity in vitro: Antogonist pharmacology and intracellular calcium concentrations.J. Neurosci. 10, 283–292.PubMedGoogle Scholar
  22. Monyer H., Goldberg M. P., and Choi D. W. (1989) Glucose deprivation neuronal injury in cortical culture.Brain Res. 483, 347–354.PubMedCrossRefGoogle Scholar
  23. Morales H. P. and Schousboe A. (1988) Volume regulation in astrocytes: A role for taurine as an osmoeffector.J. Neurosci. Res. 20, 505–509.CrossRefGoogle Scholar
  24. Murphy E. J., Anderson D. K., Means E. D., and Horrocks L. A. (1989) Pressure induced trauma in ROC-1 oligodendroglial cell cultures.Trans. Am. Soc. Neurochem. 20, 141.Google Scholar
  25. Norenberg M. D., Mozes L. W., Gregorios J. B., and Norenberg L. O. B. (1987) Effects of lactic acid on astrocytes in primary culture.J. Neuropathol. Exp. Neurol. 46, 154–166.PubMedCrossRefGoogle Scholar
  26. Panter S. S., Yum S. W., and Faden A. I. (1990) Alteration in extracellular amino acids after traumatic spinal cord injury.Ann. Neurol. 27, 96–99.PubMedCrossRefGoogle Scholar
  27. Phillips H. J. (1973) Dye exclusion tests for cell viability, inTissue Culture Methods and Applications (Kruse P. P., Jr. and Patterson M. K., eds.), pp. 406–408, Academic, New York.Google Scholar
  28. Renkawek K. Herbaczynska-Cedro K., and Mossakowski M. J. (1986) The effect of prostacyclin on the morphological and enzymatic properties of CNS cultures exposed to anoxia.Acta Neurol. Scand. 73, 111–118.PubMedCrossRefGoogle Scholar
  29. Rotman B. and Papermaster B. W. (1966) Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters.Proc. Natl. Acad. Sci. USA 55, 134–141.PubMedCrossRefGoogle Scholar
  30. Singh N. P. and Stephens R. E. (1986) A novel technique for viable cell determinations.Stain Tech. 61, 315–318.Google Scholar
  31. Swanson R. A., Yu A. C. H., Chan P. H., and Sharp F. R. (1990) Glutamate increases glycogen content and reduces glucose utilization in primary astrocyte culture.J. Neurochem. 54, 490–495.PubMedCrossRefGoogle Scholar
  32. Weiss J. H., Hartley D. M., Koh J., and Choi D. W. (1990) The calcium channel blocker nifedipine attenuates slow excitatory amino acid neurotoxicity.Science 247, 1474–1477.PubMedCrossRefGoogle Scholar
  33. Yoshida S., Inoh S., Asano T., Sano K., Kubota M., Shmazaki H., and Ueta N. (1980) Effect of transient ischemia on free fatty acids and phospholipids in the gerbil brain.J. Neurosurg. 53, 323–331.PubMedCrossRefGoogle Scholar
  34. Yu A. C. H., Gregory G. A., and Chan P. H. (1989) Hypoxia-induced dysfunction and injury of astrocytes in primary cell cultures.J. Cereb. Blood Flow Metab. 9, 20–28.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1993

Authors and Affiliations

  • Eric J. Murphy
    • 1
  • Lloyd A. Horrocks
    • 1
  1. 1.Department Medical BiochemistryThe Ohio State UniversityColumbus

Personalised recommendations