Skip to main content
Log in

Effects of long-term phenytoin treatment on brain weight and zinc and copper metabolism in rats

  • Original Articles
  • Published:
Neurochemical Pathology

Abstract

The effects of phenytoin (PHT) treatment on brain weights and the zinc (Zn) and copper (Cu) concentrations in liver, kidney, and five parts of the brain have been studied in rats. After 32 wk of treatment (daily doses 72–88 mg/kg body weight), significantly reduced brain weights were found in rats sacrificed during treatment, but not in those sacrificed after 14 d of abstinence. The weight reduction mainly seemed to affect cortex, but cerebellum was also influenced. The PHT treatment during 18 wk did not significantly reduce the brain weights. At the end of treatment, significantly increased serum Cu concentrations were found, as well as decreased Zn levels in the liver and low Cu levels in the kidney. No large alterations were found in the trace element concentrations of different brain regions. The PHT treatment for 32 wk induced physical dependence, recorded as convulsions.

It is suggested that PHT through a chelate binding with Zn and Cu interferes with the metabolism of the trace elements and the drug may cause a Zn deficiency. The observed decrease of the brain weights may have some parallel to the mental side effects of the drug observed during chronic epilepsy therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alling C., Bruce Å, Karlsson I., and Svennerholm L. (1974) The effect of different dietary levels of essential fatty acids on lipids of rat cerebrum during maturation.J. Neurochem. 23, 1263–1270.

    Article  PubMed  CAS  Google Scholar 

  • Barbeau A. and Donaldson J. (1974) Zinc, taurine, and epilepsy.Arch. Neurol. 30, 52–58.

    PubMed  CAS  Google Scholar 

  • Dencker L and Tjälve H. (1979) An autoradiographic study on the fate of65-Zn in zinc-rich tissues in some rodents.Med. Biol. 57, 391–397.

    PubMed  CAS  Google Scholar 

  • Glowinski J. and Iversen L. L. (1966) Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine, and [3H]dopa in various regions of the brain.J. Neurochem. 13, 655–659.

    Article  PubMed  CAS  Google Scholar 

  • Hallmans G. (1978) Absorption of topically applied zinc and changes in zinc metabolism during wound healing. An experimental and clinical investigation.Acta Derm. Venereol. 58 (suppl 80), 8–13.

    Google Scholar 

  • Houghton G. W., Richens A., Toseland P. A., Davidson S., and Falconer M. A. (1975) Brain concentrations of phenytoin, phenobarbitone and primidone in epileptic patients.Eur. J. Clin. Pharmacol. 9, 73–78.

    Article  PubMed  CAS  Google Scholar 

  • Hunt D. M. (1980) Copper and neurological function.Ciba Found. Symp. 79, 247–266.

    PubMed  CAS  Google Scholar 

  • Jacobsen N. O., Moskilde L., Myhre-Jensen O., Pedersen E., and Wildenhoff K. E. (1976) Liver biopsies in epileptics during anticonvulsant therapy.Acta Med. Scand. 199, 345–348.

    PubMed  CAS  Google Scholar 

  • Joyal C., Botez M. I., and Lalonde R. (1984) Serum concentrations of phenytoin after oral administration in rats.Epilepsia 25, 387–389.

    Article  PubMed  CAS  Google Scholar 

  • Kalant H. A. E., LeBlanc A. E., and Gibbins R. S. (1971) Tolerance to, and dependence on, some non-opiate psychotropic drugs.Pharmacol. Rev. 23, 235–291.

    Google Scholar 

  • Kirchgessner M., Roth H. P., and Weingand E. (1976) Biochemical changes in zinc deficiency, inTrace elements in human health and disease. vol. I: Zinc and copper (Prasad A. S. and Oberleas D., eds.), pp. 189–225. Academic, New York, NY.

    Google Scholar 

  • Kishi R., Ikeda T., Miyake H., Uchino E., Tsuzuki T., and Inoue K. (1982) Regional distribution of lead, zinc, iron, and copper in suckling and adult rat brains.Brain Res. 251, 180–182.

    Article  PubMed  CAS  Google Scholar 

  • Kraak J. C. and Crombeen J. P. (1982) Determination of anticonvulsants by high pressure liquid chromatography.J. Liq. Chromatog. 5, (suppl 2), 273–304.

    CAS  Google Scholar 

  • Massie H. R., Colacicco J. R., and Aiello V. R. (1980) Phenytoin-induced serum copper and ceruloplasmin in C57BL/6J mice of different ages.Age 3, 33–37.

    Article  CAS  Google Scholar 

  • Masuda Y., Utsui Y., Shiraishi Y., Karasawa T., Yoshida K., and Shimizu M. (1979) Relationships between plasma concentrations for diphenylhydantoin, phenobarbital, carbamazepin, and 3-sulfamoylmethyl-1,2-benzisoxazole (AD-810), a new anticonvulsant agent, and their anticonvulsant or neurotoxic effects in experimental animals.Epilepsia 20, 623–633.

    Article  PubMed  CAS  Google Scholar 

  • McLain Jr. L. W., Martin J. T., and Allen J. H. (1980) Cerebellar degeneration due to chronic phenytoin therapy.Ann. Neurol. 7, 18–23.

    Article  PubMed  Google Scholar 

  • Nordberg A. and Wahlström G. (1981) Changes in cholinergic function in rat brain late in abstinence after chronic barbital treatment.Drug Alcohol Depend. 7, 51–61.

    Article  PubMed  CAS  Google Scholar 

  • Palm R. and Hallmans G. (1982) Zinc and copper metabolism in phenytoin therapy.Epilepsia 23, 453–461.

    Article  PubMed  CAS  Google Scholar 

  • Palm R., Hänström L., Hallmans G., and Winblad B. (1985). The effects of phenytoin on serum and organ concentrations of zinc and copper in cat. Epilepsia26, 184–188.

    Article  PubMed  CAS  Google Scholar 

  • Prasad A. S. (1979) Clinical, biochemical, and pharmacological role of zinc.Annu. Rev. Pharmacol. Toxicol. 20, 393–426.

    Article  Google Scholar 

  • Reynolds E. H. (1975) Chronic antiepileptic toxicity: A review.Epilepsia 16, 319–352.

    Article  PubMed  CAS  Google Scholar 

  • Siegel S. (1956) The Fisher exact probability test, inNonparametric Statistics for The Behavioral Sciences. pp. 96–104. McGraw-Hill, Kogakusha, Tokyo.

    Google Scholar 

  • Silfvenius H., Olofsson S., and Ridderheim P-Å. (1980) Induced epileptiform activity from dendrites of hippocampal neurones.Acta Physiol. Scand. 108, 109–111.

    Article  PubMed  CAS  Google Scholar 

  • Thompson P., Huppert F. A., and Trimble M. (1981) Phenytoin and cognitive function: effects on normal volunteers and implication for epilepsy.Br. J. Clin. Psychol. 20, 155–162.

    PubMed  CAS  Google Scholar 

  • Vicuna A., Lalka D., duSouich P., Vicuna N., Ludden T. M., and McLean A. J. (1980) Dose-dependence of the apparent half-life of phenytoin in the rat.Res. Commun. Chem. Pathol. Pharmacol. 28, 3–11.

    PubMed  CAS  Google Scholar 

  • Wahlström G. and Larsson R. (1977) Activity pattern and convulsions in the abstinence period after barbital treatment in the rat.Pharmacol. Biochem. Behav. 6, 187–192.

    Article  PubMed  Google Scholar 

  • Wahlström G. and Nordberg A. (1978) Decreased brain weights in rat after longterm barbital treatments.Life Sci. 23, 1583–1590.

    Article  PubMed  Google Scholar 

  • Weismann K., Knudsen L., and Höyer H. (1978) Phenytoin increases65Zn absorption in the rat.J. Invest. Dermatol. 71, 396–397.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palm, R., Hallmans, G. & Wahlstrom, G. Effects of long-term phenytoin treatment on brain weight and zinc and copper metabolism in rats. Neurochemical Pathology 5, 87–106 (1986). https://doi.org/10.1007/BF03160125

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03160125

Index Entries

Navigation