Molecular and Chemical Neuropathology

, Volume 22, Issue 3, pp 197–210 | Cite as

Neuropeptide Y immunoreactive neurons in murine trisomy 16 cortical cultures

Plasticity of expression and differentiation
  • Maria T. Caserta
Original Articles


Neuropeptide Y (NPY)-containing neurons are depleted in the cortices of individuals with Alzheimer disease (AD), yet spared in the striatum of patients with Huntington chorea. It is unknown whether this neuronal phenotype is inherently susceptible to the neurodegenerative processes that are a hallmark of AD. To study this question, the murine trisomy 16 model of Down syndrome and Alzheimer disease was investigated. Since trisomic fetuses diein utero, studies were carried out on primary cultures of dissociated cortical neurons. These were prepared from 15-d gestational trisomy 16 fetuses and their littermate euploid controls, and examined by immunocytochemical staining for neuropeptide Y at 7 and 12 d in vitro. Trisomy 16 neurons were also grown on euploid glial carpets, whereas euploid neurons were grown on trisomic glia. The results demonstrate a significant increase in the number of NPY neurons and a stunting in the dendritic arbor of these neurons in trisomic vs euploid cortex. Both of these parameters could be normalized by direct contact with euploid glia. When euploid cortex was plated on trisomic glia, the number of NPY neurons and their morphology were altered so that they began to resemble trisomic NPY cortical neurons. These results indicate a dysregulation of NPY neuronal expression and differentiation in trisomy 16 cortex that are modifiable by interaction with euploid glia and imply an abnormal trophic (glial) environment in trisomic cortex.

Index Entries

Neuropeptide Y tissue culture cerebral cortex immunocytochemistry glia aneuploidy trisomy 16 Down syndrome Alzheimer disease 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ault B., Caviedes P., and Rapoport S. I. (1989) Neurophysiological abnormalities in cultured dorsal root ganglion neurons from the trisomy 16 mouse fetus, a model for Down syndrome.Brain Res. 485, 165–170.PubMedCrossRefGoogle Scholar
  2. Beal M. F., Mazurek M. F., Chatta G. K., Svendsen C. N., Bird E. D., and Martin J. B. (1986a) Neuropeptide Y immunoreactivity is reduced in cerebral cortex in Alzheimer’s patients.Ann. Neurol. 20, 282–288.PubMedCrossRefGoogle Scholar
  3. Beal M. F., Mazurek, M. F., Svendsen C. N., Bird E. D., and Martin J. B. (1986b) Widespread reduction of somatostatin like immunoreactivity in the cerebral cortex in Alzheimer’s disease.Ann. Neurol. 20, 489–495.PubMedCrossRefGoogle Scholar
  4. Bendotti C., Hohmann C., Forloni G., Reeves R., Coyle J. T., and Oster-Granite M.-L. (1990) Developmental expression of somatostatin in mouse brain: II. In situ hybridization.Dev. Brain Res. 53, 26–39.CrossRefGoogle Scholar
  5. Caserta M. T., Corsi P., Oster-Granite M.-L., and Coyle J. T. (1990) Increased number of somatostatin-immunoreactive neurons in primary cultures of trisomy 16 mouse cortex.Mol. Brain Res. 7, 269–272.PubMedCrossRefGoogle Scholar
  6. Chan-Palay V. (1987) Somatostatin immunoreactive neurons in the human hippocampus and cortex shown by immunogold/silver intensification on vibratome sections: co-existence with neuropeptide Y neurons, and effects in Alzheimer-type dementia.J. Comp. Neurol. 260, 201–223.PubMedCrossRefGoogle Scholar
  7. Cheng S. V., Nadeau J. H., Tanzi R. E., Watkins P. C., Jagadesh J., Taylor B. A., Haines J. L., Sacchi N., and Gusella J. F. (1988) Comparative mapping of DNA markers from familial Alzheimer’s disease and Down syndrome region of human chromosome 21 to mouse chromosomes 16 and 17.Proc. Natl. Acad. Sci. USA 85, 6032–6036.PubMedCrossRefGoogle Scholar
  8. Chronwall B. M., Chase T. N., and Donohue T. L. (1984) Coexistence of neuropeptide Y and somatostatin in rat and human cortical and hypothalamic neurons.Neurosci. Lett. 52, 213–217.PubMedCrossRefGoogle Scholar
  9. Corsi P. and Coyle J. T. (1991) Nerve growth factor corrects developmental impairments of basal forebrain cholinergic neurons in the trisomy 16 mouse.Proc. Natl. Acad. Sci. USA 88, 1793–1797.PubMedCrossRefGoogle Scholar
  10. Coyle J. T., Price D. L., and Delong M. R. (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation.Science 219, 1184–1190.PubMedCrossRefGoogle Scholar
  11. Coyle J. T., Oster-Granite M. L., Reeves R., Hohmann C., Corsi P., and Gearhart J. (1991) Down Syndrome and the trisomy 16 mouse: Impact of gene imbalance on brain development and aging, inGenes, Brain and Behavior (McHugh P. R. and McKusik V. A., eds.), Raven Press, New York.Google Scholar
  12. Davies P., Katzman R., and Terry R. D. (1980) Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer’s disease and Alzheimer senile dementia.Nature 288, 279,280.PubMedCrossRefGoogle Scholar
  13. Davies C. A., Morroll D. R., Prinja D., Mann D. M. A., and Gibbs A. (1990) A quantitative assessment of somatostatin-like and neuropeptide Y-like immunostained cells in the frontal and temporal cortex of patients with Alzheimer’s disease.J. Neurol. Sci. 96, 59–73.PubMedCrossRefGoogle Scholar
  14. Davisson M. T., Schmidt C., Reeves R. H., Irving N. G., Akeson E. C., Harris B. S., and Bronson R. T. (1993) Segmental trisomy as a mouse model for Down syndrome, inThe Phenotypic Mapping of Down Syndrome and Other Aneuploid Conditions (Epstein C. J., ed.), pp. 117–133, Wiley-Liss, New York.Google Scholar
  15. Epstein C. J. (1986)Consequences of Chromosome Imbalance: Principles, Mechanisms and Models. pp. 253–322, Cambridge University Press, New York.Google Scholar
  16. Ferrier I. N., Cross A. J., Johnson J. A., Roberts G. W., Crow T. J., Corsellis J. A. N., Lee Y. C., O’Shaughnessy D., Adrian T. E., McGregor G. P., Barcese-Hamilton A. J., and Bloom S. R. (1983) Neuropeptides in Alzheimer’s type dementia.J. Neurol. Sci. 62, 159–170.PubMedCrossRefGoogle Scholar
  17. Forloni G., Hohmann C., and Coyle J. T. (1990) Developmental expression of somatostatin in mouse brain I. Immunocytochemical studies.Dev. Brain Res. 53, 6–25.CrossRefGoogle Scholar
  18. Hardy J., Adolfsson R., Alafuzoff I., Bucht G., Marcusson J., Nyberg P., Perdahl E., Webster P., and Winblad B. (1985) Transmitter deficits in Alzheimer’s disease.Neurochem. Int. 7, 545–563.CrossRefGoogle Scholar
  19. Hendry S. H. C., Jones E. G., and Emson P. C. (1984) Morphology, distribution and synaptic relations of somatostatin- and neuropeptide Y-containing neurons in rat and monkey neocortex.J. Neurosci. 4, 2407–2517.Google Scholar
  20. Holtzman D. M., Li Y., DeArmond S. J., McKinley M. P., Gage F. H., Epstein C. J., and Mobley W. C. (1992a) Mouse model of neurodegeneration: atrophy of basal forebrain cholinergic neurons in trisomy 16 transplants.Proc. Natl. Acad. Sci. USA 89, 1383–1387.PubMedCrossRefGoogle Scholar
  21. Holtzman D. M., Bayney R. M., Berger C. N., Epstein C. J., and Mobley W. C. (1992b) Dysregulation of gene expression in mouse trisomy 16: an animal model of Down Syndrome.EMBO J. 11, 619–627.PubMedGoogle Scholar
  22. Kowall N. W. and Beal M. F. (1988) Cortical somatostatin, neuropeptide Y and NADPH diaphorase neurons: normal anatomy and alterations in Alzheimer’s disease.Ann. Neurol. 23, 105–114.PubMedCrossRefGoogle Scholar
  23. Lindefors N., Brene S., Herrera-Marshitz M., and Persson H. (1990) Regulation of Neuropeptide Y gene expression in rat brain.Ann. NY Acad. Sci. 611, 175–185.PubMedGoogle Scholar
  24. Nakamura S. and Vincent S. R. (1986) Somatostatin- and neuropeptide Y-immunoreactive neurons in the neocortex in senile dementia of Alzheimer’s type.Brain Res. 370, 11–20.PubMedCrossRefGoogle Scholar
  25. Nawa H., Bessho Y., Carnahan J., Nakanishi S., and Mizuno K. (1993) Regulation of neuropeptide expression in cultured cerebral cortical neurons by brain-derived neurotrophic factor.J. Neurochem. 60, 772–775.PubMedCrossRefGoogle Scholar
  26. Orozco C. B., Epstein C. J., and Rapoport S. I. (1988) Voltage activated sodium conductances in cultures normal and trisomy 16 dorsal root ganglion neurons from the fetal mouse.Dev. Brain Res. 38, 265–274.CrossRefGoogle Scholar
  27. Orozco C. B., Smith S. A., Epstein C. J., and Rapoport S. I. (1987) Electrophysiological properties of cultured dorsal root ganglion and spinal cord neurons of normal and trisomy 16 fetal mice.Dev. Brain Res. 32, 111–122.CrossRefGoogle Scholar
  28. Oster-Granite M. L., Gearhart G. D., Reeves R. H., Singer H. S., Moran T. H., and Coyle J. T. (1987) Down Syndrome and the trisomy 16 mouse, inNeurology and Neurobiology, vol. 33,Animal Models of Dementia: A Synaptic Neurochemical Perspective (Coyle J. T., ed.), pp. 279–307, A. R. Liss, New York.Google Scholar
  29. Phillips H. S., Hains, J. M., Armanini M., Laramee G. R., Johnson S. A., and Winslow J. W. (1991) BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease.Neuron 7, 695–702.PubMedCrossRefGoogle Scholar
  30. Plioplys A. V. (1988) Expression of the 210 kDa neurofilament subunit in cultured central nervous system from normal and trisomy 16 mice: regulation by interferon.J. Neurol. Sci. 85, 209–222.PubMedCrossRefGoogle Scholar
  31. Reeves R. H., Gallaghan D., O’Hara B. F., Callahan R., and Gearhart J. D. (1987) Genetic mapping of Prm-1, Igl-1, Smst, Mtv-6, Sod-1 and Ets-2 and localization of the Down syndrome region on mouse chromosome 16.Cytogenet. Cell Genet. 44, 76–81.PubMedCrossRefGoogle Scholar
  32. Reinikainen K. J., Riekkinen P. J., Jolkkonen J., Kosma V-M., and Soininen H. (1987) Decreased somatostatin-like immunoreactivity in cerebral cortex and cerebrospinal fluid in Alzheimer’s disease.Brain Res. 402, 103–108.PubMedCrossRefGoogle Scholar
  33. Richards S. J., Waters J. J., Beyreuther K., Masters C. L., Wischik C. M., Sparkman D. R., White C. L., Abraham C. R., and Dunnett S. B. (1991) Transplants of mouse trisomy 16 hippocampus provide a model of Alzheimer disease related pathology.EMBO J. 2, 297–303.Google Scholar
  34. Rossor M. N., Emson P. C., Mountjoy C. Q., Roth M., and Iversen L. L. (1980) Reduced amounts of immunoreactive somatostatin in the temporal cortex in senile dementia of Alzheimer type.Neurosci. Lett. 20, 373–377.PubMedCrossRefGoogle Scholar
  35. Rumble B., Retallack R., Hilbich C., Simms G., Multhaap G., Martins R., Hockey A., Montgomery P., Beyreuther K., and Masters C. L. (1989) Amyloid A4 protein and its precursors in Down syndrome and Alzheimer’s disease.N. Engl. J. Med. 320, 1446–1452.PubMedGoogle Scholar
  36. Stoll J., Balbo A., Ault B., Rapoport S., and Fine A. (1993) Long-term transplants of mouse trisomy 16 hippocampal neurons, a model for Down’s syndrome, do not develop Alzheimer’s disease pathology.Brain Res. 610, 295–304.PubMedCrossRefGoogle Scholar
  37. Unger J., Schwrtzberg M., Weindl A., and Lange W. (1986) Neuropeptide Y in the human and monkey cerebral cortex: colocalization with somatostatin.Neurosci. Lett. suppl 26, S606.Google Scholar
  38. Vincent S. R., Johansson O., Hokfelt T., Meyerson B., Sachs C., Elde R. P., Terenius L., and Kimmel J. (1982) Neuropeptide co-existence in human cortical neurons.Nature 298, 65–67.PubMedCrossRefGoogle Scholar
  39. Vincent S. R., Johansson O., Hokfelt T., Skirboll L., Elde R. P., Terenius L., Kimmel J., and Goldstein M. (1983) NADPH-diaphorase: a selective histochemical marker for striatal neurons containing both somatostatin and avian pancreatic polypeptide-like immunoreactivities.J. Comp. Neurol. 217, 252–263.PubMedCrossRefGoogle Scholar
  40. Whitehouse P. J., Price D. L., Struble R. G., Clark A. W., Coyle J. T., and Delong M. R. (1985) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain.Science 215, 1237–1239.CrossRefGoogle Scholar
  41. Wisniewski K. E., Wisniewski H. M., and Wen G. Y. (1985) Occurrence of neuropathological changes and dementia of Alzheimer disease in Down syndrome.Ann. Neurol. 17, 278–282.PubMedCrossRefGoogle Scholar
  42. Zoli M., Ferraguti F., Toffano G., Fuxe K., and Agnati L. (1993) Neurochemical alterations but not nerve cell loss in aged rat neostratium.J. Chem. Neuroanat. 6, 131–145.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 1994

Authors and Affiliations

  • Maria T. Caserta
    • 1
  1. 1.Department of PsychiatryNorthwestern University Medical School, Evanston HospitalEvanston

Personalised recommendations