Advertisement

Molecular and Chemical Neuropathology

, Volume 21, Issue 1, pp 13–22 | Cite as

Area-specific modification of acetylcholinesterase activity following 3-mercaptopropionic acid-induced seizures

  • Elena Girardi
  • Patricia Schneider
  • Georgina Rodríguez de Lores Arnaiz
Original Articles

Abstract

Acetylcholinesterase activity (AChE) was assayed in rat CNS membrane fractions after administration of the convulsant 3-mercaptopropionic acid (150 mg/kg, ip). In comparison with saline-injected controls, total AChE activity decreased 12–20% in striatum and cerebellum during seizure and postseizure but failed, to change in cerebral cortex. Specific AChE activity, assayed in the presence of 10−4 M ethopropazine (a butyrylcholinesterase inhibitor) decreased 15–25% in striatum and cerebellum, increased 20–45% in hippocampus, but remained unchanged in cerebral cortex. Saline injection alone increased AChE activity in striatum (68%) and cerebellum (36%) but failed to modify enzyme activity in hippocampus and cerebral cortex. To conclude, AChE sensitivity to convulsant, and saline administration is tissue-specific and not restricted to cholinergic areas.

Index Entries

Acetylcholinesterase seizures 3-mercaptopropionic acid striatum cerebellum hippocampus saline injection convulsant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams H. E., Hoblit P. R., and Sulker P. B. (1969) Electroconvulsive shock, brain acetylcholinesterase activity and memory.Physiol. Behav. 4, 1113–1116.CrossRefGoogle Scholar
  2. Appleyard M. E., Green A. R., and Smith A. D. (1986) Acetylcholinesterase activity in regions of the rat brain following a convulsion.J. Neurochem 46, 1789–1793.PubMedCrossRefGoogle Scholar
  3. Appleyard M. E., Taylor S. C., and Little H. J. (1990) Acetylcholinesterase activity in regions of mouse brain following acute and chronic treatment with a benzodiazepine inverse agonist.Br. J. Pharmacol. 101, 599–604.PubMedGoogle Scholar
  4. Appleyard M. and Jahnsen H. (1992) Actions of, acetylcholinesterase in the guinea-pig cerebellar cortex in vitro.Neuroscience 47, 291–301.PubMedCrossRefGoogle Scholar
  5. Ellman G. L., Courtney K. D., Andres V. Jr., and Featherstone R. M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity.Biochem. Pharmacol. 7, 88–95.PubMedCrossRefGoogle Scholar
  6. Emson P. C. (1978) Biochemical and metabolical changes in epilepsy, in:Taurine and Neurological Disorders (Barbeau A. and Huxtable R. J., eds.), pp. 319–338, Raven, New York.Google Scholar
  7. Geoffroy M., Tvede K., Christensen A. V., and Schou J. S. (1991) The effect of imipramine and lithium on “learned helplessness” and acetylcholinesterase in rat brain.Pharmacol. Biochem. Behav. 38, 93–97.PubMedCrossRefGoogle Scholar
  8. Girardi E., Pérez Rafo G., and Rodríguez de Lores Arnaiz G. (1989a) A study of 5′-nucleotidase activity in subcellular fractions of rat cerebellum after the administration of the convulsant 3-mercaptopropionic acid.Mol. Chem. Neuropathol. 11, 65–75.PubMedCrossRefGoogle Scholar
  9. Girardi E., Pérez Raffo G., and Rodríguez de Lores Arnaiz G. (1989b) Increase of 5′-nucleotidase activity in some brain subcellular fractions after the administration of the convulsant 3-mercaptopropionic acid.Neurochem. Int. 14, 331–335.CrossRefPubMedGoogle Scholar
  10. Gorenstein C., Gallardo K. A., and Robertson R. T. (1991) Molecular forms of acetycholinesterase in cerebral cortex and dorsal thalamus of developing rats.Dev. Brain Res. 61, 271–276.CrossRefGoogle Scholar
  11. Green R. C., Blume H. W., Kupferschmid S. B., and Mesulam M-M. (1989) Alterations of hippocampal acetylcholinesterase in human temporal lobe epilepsy.Ann. Neurol. 26, 347–351.PubMedCrossRefGoogle Scholar
  12. Hawkins C. A. and Greenfield S. A. (1992a) Non-cholinergic action of exogenous acetylcholinesterase in the rat substantia nigra. I. Differential effects on motor behaviour.Behav. Brain Res. 48, 153–157.PubMedCrossRefGoogle Scholar
  13. Hawkins C. A. and Greenfield S. A. (1992b), Non-cholinergic action of exogenous acetylcholinesterase in the rat substantia nigra. II. Long-term interactions with dopamine metabolism.Behav. Brain Res. 48, 159–163.PubMedCrossRefGoogle Scholar
  14. Hoover D. B., Craig C. R., and Colasanti B. K. (1977) Cholinergic involvement in cobalt-induced epilepsy in the rat.Exp. Brain Res. 29, 501–513.PubMedCrossRefGoogle Scholar
  15. Huff F. J., Reiter C. T., and Rand J. B. (1989) The ratio of acetylcholinesterase, to butyrylcholinesterase influences the specificity of assays for each enzyme in human brain.J. Neural. Transm. 75, 129–134.PubMedCrossRefGoogle Scholar
  16. Kiefer-Day J. S. and El-Fakahany E. E. (1992) Muscarinic receptor function and acetylcholinesterase activity after chronic administration of tacrine to mice at therapeutic drug concentrations.Pharmacology 44, 71–80.PubMedCrossRefGoogle Scholar
  17. Kvaltinova Z., Lukovic L., Machova J., and Fatranska M. (1991) Effect of the steroidal alkaloid Buxaminol-E on blood pressure, acetylcholinesterase activity and3H-Quinuclidinyl benzilate binding in cerebral cortex.Pharmacology 43, 20–25.PubMedCrossRefGoogle Scholar
  18. Lowry, O. H., Rosebrough, N., Farr A. L., and Randall R. J. (1951) Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  19. McLean M. J., Gupta R. C., Dettbarn W. D., and Wamil A. W. (1992) Prophylactic and therapeutic efficacy on memantine against seizures produced by soman in the rat.Toxicol. Appl. Pharmacol. 112, 95–103.PubMedCrossRefGoogle Scholar
  20. Rodríguez de Lores Arnaiz G., Alberici de Canal M., and De Robertis R. (1972) Alteration of GABA system and Purkinje cells in rat cerebellum by the convulsant 3-mercaptopropionic acid.J. Neurochem. 19, 1379–1385.CrossRefGoogle Scholar
  21. Rodríguez de Lores Arnaiz G., Alberici de Canal M., Robiolo B., and Mistrorigo de Pacheco M. (1973) The effect of the convulsant 3-mercaptopropionic acid on enzymes of the γ-aminobutyrate system in the rat cerebral cortex.J. Neurochem. 21, 615–623.CrossRefGoogle Scholar
  22. Rodriguez de Lores Arnaiz G. and Girardi E. (1977) The increase in respiratory capacity of brain subcellular fractions after the administration of the convulsant 3-mercaptopropionic acid.Life. Sci. 21, 637–646.CrossRefGoogle Scholar
  23. Schneider P. G., Girardi E., and Rodríguez de Lores Arnaiz G. (1992) 3-Mercaptopropionic acid administration increases the affinity of [3H]quinuclidinyl benzilate binding to membranes of the striatum and cerebellum.Neurochem. Int. 20, 591–597.PubMedCrossRefGoogle Scholar
  24. Small D. H. (1989) Acetylcholinesterase: zymogens of neuropeptide processing enzymes?Neuroscience 29, 241–249.PubMedCrossRefGoogle Scholar
  25. Wasterlain C. G., Farber D. B., and Fairchild M. D. (1986) Synaptic mechanism in the kindled epileptic focus; a speculative synthesis. inAdvances in Neurology (Delgado-Escueta A. V., Ward A. A. Jr., Woodbury D. M., and Porter R. J., eds.), pp. 411–433, Raven, New York.Google Scholar
  26. Webb C. P. and Greenfield S. A. (1992) Non-cholinergic effects of acetyl cholinesterase in the substantia nigra: a possible role for an ATP-sensitive potassium channel.Exp. Brain Res. 89, 49–58.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1994

Authors and Affiliations

  • Elena Girardi
    • 1
  • Patricia Schneider
    • 1
  • Georgina Rodríguez de Lores Arnaiz
    • 1
  1. 1.Instituto de Biología Celular, Facultad de MedicinaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations