Advertisement

Molecular and Chemical Neuropathology

, Volume 12, Issue 3, pp 203–213 | Cite as

Neuronal damage and calcium accumulation following transient cerebral ischemia in the rat

  • Tsutomu Araki
  • Teruyoshi Inoue
  • Hiroyuki Kato
  • Kyuya Kogure
  • Matsutaro Murakami
Original Articles

Abstract

The purpose of this study was to examine the distribution of neuronal damage following transient cerebral ischemia in the rat model of four-vessel occlusion utilizing light microscopy as well as45Ca-autoradiography. Transient ischemia was induced for 30 min. The animals were allowed to survive for 7 d after ischemia.

In the animals subjected to ischemia, the most frequently and seriously damaged areas were the paramedian region of hippocampus, the hippocampal CA1 sector, and the dorsolateral part of striatum, followed by the inferior colliculus, the substantia nigra, the frontal cortex, and the thalamus, which were moderate damaged. Furthermore, the cerebellar Purkinje neurons, the hippocampal CA4 sector, the medial geniculate body, and the hippocampal CA3 sector were slightly affected.45Ca-autoradiographyic study also revealed calcium accumulation in the identical sites of ischemic neuronal damage, except for the frontal cortex. Regional cerebral blood flow during 10 min of ischemia was severely decreased in selectively vulnerable areas. The blood flow in the medial geniculate body, the substantia nigra, the inferior colliculus, and the cerebellum was less pronounced than that in the selectively vulnerable areas. The present study demonstrates that transient cerebral ischemia can produce significant neuronal damage not only in the selectively vulnerable regions, but also in the brainstem.

Index Entries

Cerebral ischemia selective neuronal vulnerability calcium accumulation rat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araki T., Kato H., and Kogure K. (1989) Selective neuronal vulnerability following transient cerebral ischemia in the gerbil: distribution and time course.Acta Neurol. Scand. 80, 548–553.PubMedCrossRefGoogle Scholar
  2. Benveniste H. And Diemer N. H. (1988) Early postischemic45Ca accumulation in rat dentate hilus.J. Cereb. Blood Flow Metab. 8, 713–719.PubMedGoogle Scholar
  3. Benveniste H., Drejer J., Schousboe A., and Diemer N. H. (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis.J. Neurochem. 43, 1369–1374.PubMedCrossRefGoogle Scholar
  4. Brierley J. (1976) Cerebral hypoxia. Greenfield’s Neuropathology, (Blackwood W. and Corsellis A., eds.), pp. 43–85, Edward Arnold, London.Google Scholar
  5. Cotman C. W., Monaghan D. T., Ottersen O. P., and Storm-Mathisen J. (1987) Anatomical organizational of excitatory amino acid receptors and their pathways.Trend. Neurosci. 10, 273–280.CrossRefGoogle Scholar
  6. Crain B. J., Westerkam W. D., Harrison A. H., and Nadler J. V. (1988) Selective neuronal death after transient forebrain ischemia in the mongolian gerbil: A silver impregnation study.Neuroscience 27, 387–402.PubMedCrossRefGoogle Scholar
  7. Diemer N. H. and Siemkowicz E. (1980) Increased 2-deoxyglucose uptake in hippocampus, globus pallidus and substantia nigra after cerebral ischemia.Acta Neurol. Scand. 61, 56–63.PubMedCrossRefGoogle Scholar
  8. Dienel G. A. (1984) Regional accumulation of calcium in postischemic rat brain.J. Neurochem. 43, 913–925.PubMedCrossRefGoogle Scholar
  9. Jorgensen M. B. and Diemer N. H. (1982) Selective neuron loss after cerebral ischemia in the rat: Possible role of transmitter glutamate.Acta Neurol. Scand. 66, 536–546.PubMedCrossRefGoogle Scholar
  10. Kogure K., Tanaka J., and Araki T. (1988) The mechanism of ischemia-induced brain cell injury.Neurochem. Pathol. 9, 145–170.PubMedGoogle Scholar
  11. Onodera H., Araki T., and Kogure K. (1989) Protein kinase C activity in the rat hippocampus after forebrain ischemia: autoradiographic analysis by [3H]phorbol 12, 13-dibutyrate.Brain Res. 481, 1–7.PubMedCrossRefGoogle Scholar
  12. Paxinos G. and Watson C. (1982)The Rat Brain in Stereotaxic Coordinates. Academic, Sydney.Google Scholar
  13. Pulsinelli W. A. (1985) Selective neuronal vulnerability: morphological and molecular characteristics.Progress in Brain Research, vol. 63 (Kogure K., Hossmann K.-A., Siesjö B. K., and Welsh F. A., eds.), pp. 29–37, Elsevier, New York.Google Scholar
  14. Pulsinelli W. A. and Brierley J. B. (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat.Stroke 10, 267–272.PubMedGoogle Scholar
  15. Pulsinelli W. A., Brierley J. B., and Plum F. (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia.Ann. Neurol. 11, 491–498.PubMedCrossRefGoogle Scholar
  16. Pulsinelli W. A., Brierley J. B., Duffy T., Levy D., and Plum F. (1981) Ischemic neuronal damage, postischemic regional blood flow, and glucose metabolism in rat brain.J. Cereb. Blood Flow Metab. 1, 166–167.Google Scholar
  17. Rothmann S. M. and Olney J. W. (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage.Ann. Neurol. 19, 105–111.CrossRefGoogle Scholar
  18. Sakamoto N., Kogure K., Kato H., and Ohtomo H. (1985) Disturbed Ca2+ homeostatis in the gerbil hippocampus following brief transient ischemia.Brain Res. 364, 372–376.CrossRefGoogle Scholar
  19. Sakurada O., Kennedy C., Jehle J. W., Brown J. D., Carbin L., and Sokoloff L. (1978) Measurement of local cerebral blood flow with iodo-14C-antipyrine.Am. J. Physiol. 234, H59-H66.PubMedGoogle Scholar
  20. Siman R., Noszek J. C., and Kegerise C. (1989) Calpain I activation is specifically related to excitatory amino acid induction of hippocampus damage.J. Neurosci. 9, 1579–1590.PubMedGoogle Scholar
  21. Smith M.-L., Auer R. N., and Siesjö B. K. (1984) The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia.Acta Neuropathol. (Berlin) 64, 319–332.CrossRefGoogle Scholar
  22. Wieloch T. (1985) Neurochemical correlates to selective neuronal vulnerability.Progress in Brain Research, (Kogure K., Hossmann K.-A., Siesjö B. K., and Welsh F. A., eds.), vol 63, pp. 69–85, Elsevier, New York.Google Scholar

Copyright information

© Humana Press 1990

Authors and Affiliations

  • Tsutomu Araki
    • 1
  • Teruyoshi Inoue
    • 1
  • Hiroyuki Kato
    • 1
  • Kyuya Kogure
    • 1
  • Matsutaro Murakami
    • 2
  1. 1.Department of Neurology, Institute of Brain DiseasesTohoku University School of MedicineSendaiJapan
  2. 2.Department of Radiology and Nuclear MedicineResearch Institute for Brain and Blood Vessels-AkitaAkitaJapan

Personalised recommendations