Molecular and Chemical Neuropathology

, Volume 14, Issue 3, pp 153–197 | Cite as

Pathology of Parkinson’s disease

Changes other than the nigrostriatal pathway
  • Kurt A. Jellinger


In Parkinson’s disease (PD), in addition to degeneration of the nigrostriatal dopaminergic pathway, a variety of neuronal systems are involved, causing multiple neuromediator dysfunctions that account for the complex patterns of functional deficits. Degeneration affects the dopaminergic mesocorticolimbic system, the noradrenergic locus ceruleus (oral parts) and motor vagal nucleus, the serotonergic raphe nuclei, the cholinergic nucleus basalis of Meynert, pedunculopontine nucleus pars compacta, Westphal-Edinger nucleus, and many peptidergic brainstem nuclei. Cell losses in subcortical projection nuclei range from 30 to 90% of controls; they are more severe in depressed and demented PD patients. Most of the lesions are region-specific, affecting not all neurons containing a specific transmitter or harboring Lewy bodies. In contrast to Alzheimer’s disease (AD), subcortical system lesions in Parkinson’s disease appear not to be related to cortical pathology, suggesting independent or concomitant degeneration. The pathogenesis of multiple-system changes contributing to chemical pathology and clinical course of Parkinson’s disease are unknown.

Index Entries

Parkinson’s disease degeneration neuropathology subcortical systems morphometry neurochemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agid Y., Javoy-Agid F., and Ruberg M. (1987) Biochemistry of neurotransmitters in Parkinson’s disease,Movement Disorders 2 (Marsden C. D. and Fahn S. T., eds.), pp. 166–230, Butterworth, London.Google Scholar
  2. Agid Y., Graybiel A. M., Ruberg M., Hirsch E., Blin J., Dubois B., and Javoy-Agid F. (1990) The efficacy of levodopa treatment declines in the course of Parkinson’s disease: Do nondopaminergic lesions play a role?Adv. Neurol. 53, 83–100.PubMedGoogle Scholar
  3. Albanese A., Altavista M. C., Gozzo S., Rossi P., Colosimo C., Bentivoglio A. R., Rerretta G., Elia M., Monaco V., and Macchi G. (1990) Chronic administration of MPTP to marmosets.Adv. Neurol. 53, 239–249.PubMedGoogle Scholar
  4. Albin R. L., Young A. B., and Penney J. B. (1989) The functional anatomy of basal ganglia disorders.Trends Neurosci. 12, 366–374.PubMedGoogle Scholar
  5. Alexander G. E., DeLong M. R., and Strick P. L. (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex.Annu. Rev. Neuroscience 9, 357–381.Google Scholar
  6. Allen J. M., Cross A. J., Crow T. J., Javoy-Agid F., Agid Y., and Bloom S. R. (1985) Dissociation of NPY and somatostatin in Parkinson disease.Brain Res. 337, 197–202.PubMedGoogle Scholar
  7. Allen J. M., Cross, A. J., Yeats, J. C., Ghatel, M. A., McGregor, G. F., and Close, S. P. (1986) Neuropeptides and dopamine in the marmoset—Effect of treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): An animal model for Parkinson’s disease.Brain 109, 143–157.PubMedGoogle Scholar
  8. Allen S. J., Dawbarn D., and Wilcock G. K. (1988) Morphometric immunochemical analysis of neurons in the nucleus basalis of Meynert in Alzheimer’s disease.Brain Res. 454, 275–281.PubMedGoogle Scholar
  9. Arai H., Kosaka K., and Iizuka R. (1984a) Changes of biogenic amines and their metabolites in postmortem brains from patients with Alzheimer type dementia.J. Neurochem. 43, 388–393.PubMedGoogle Scholar
  10. Arai H., Moroji T., and Kosaka K. (1984b) Somatostatin and vasoactive intestinal polypeptide in postmortem brains from patients with Alzheimer type dementia.Neurosci. Lett. 52, 73–78.PubMedGoogle Scholar
  11. Arendt A., Bigl V., and Tennstedt A. (1985) Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical area in Alzheimer’s disease.Neuroscience 14, 1–14.PubMedGoogle Scholar
  12. Arendt T., Bigl V., Arendt A., and Tennstedt A. (1983) Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoff’s disease.Acta Neuropathol. (Berl.) 61, 101–108.Google Scholar
  13. Arendt T., Taubert G., Bigl V., and Arendt A. (1988) Amyloid deposition in the nucleus basalis of Meynert complex: A topographic marker for degenerating cell clusters in Alzheimer’s disease.Acta Neuropathol. (Berl.) 75, 226–232.Google Scholar
  14. Arendt T., Zveginsev H. G., and Leontovich T. A. (1986) Dendritic changes in the nucleus basalis of Menyert and in the diagonal band nucleus in Alzheimer’s disease. A quantitative Golgi investigation.Neuroscience 19, 1265–1278.PubMedGoogle Scholar
  15. Armstrong D. M., Benzing W. C., Evans J., Terry R. D., Shields D., and Hansen L. A. (1989) Substance P and somatostatin coexist within neuritic plaques: Implications for the pathogenesis of Alzheimer’s disease.Neuroscience 31, 663–671.PubMedGoogle Scholar
  16. Bancher C., Lassmann H., Budka H., Jellinger K., Grundke-Iqbal I., Iqbal K., Wiche G., Seitelberger F., and Wisniewski H. M. (1989) Antigenic profile of Lewy bodies: Immunocytochemical evidence for protein phosphorylation and ubiquitination.J. Neuropathol. Exp. Neurol. 48, 81–93.PubMedGoogle Scholar
  17. Beal M. F., and Martin J. B. (1986) Neuropeptides in neurological disease.Ann. Neurol. 20, 547–565.PubMedGoogle Scholar
  18. Beal M. F., Clevens R. A., and Mazurek M. F. (1988) Somatostatin and neuropeptide Y immunoreactivity in Parkinson’s disease dementia with Alzheimer’s changes.Synapse 2, 463–467.PubMedGoogle Scholar
  19. Beal M. F., Mazurek F., Chattha G. K., Svedsen C. N., Bird E. D., and Martin J. B. (1986) Neuropeptide Y immunoreactivity is reduced in cerebral cortex in Alzheimer’s disease.Ann. Neurol. 20, 282–288.PubMedGoogle Scholar
  20. Beal M. F., Mazurek M. F., and Tran V. T. (1985) Somatostatin receptors are reduced in cerebral cortex in Alzheimer’s disease.Science 229, 289–291.PubMedGoogle Scholar
  21. Beckstead R. M. (1987) Striatal substance P cell clusters coincide with the high density terminal zones of the discontinuous nigrostriatal dopaminergic projection system in the cat.Neuroscience 20, 557–576.PubMedGoogle Scholar
  22. Bender M. B. (1980) Brain control of conjugate horizontal and vertical eye movements.Brain 103, 25–69.Google Scholar
  23. Bernheimer H., Birkmayer W., Hornykiewicz O., Jellinger K., and Seitelberger, F. (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical morphological and neurochemical correlations.J. Neurol. Sci. 20, 415–455.PubMedGoogle Scholar
  24. Bigl V., Arendt T., Fischer S., Werner M., and Arendt A. (1987) The cholinergic system in aging.Gerontology 33, 172–180.PubMedGoogle Scholar
  25. Birkmayer W. and Riederer P. (1985)Die Parkinson-Krankheit 2nd Ed. (Springer, Wien).Google Scholar
  26. Birkmayer W. and Riederer P. (1986) Biological aspects of depression in Parkinson’s disease.Psychopathology 19 (Suppl.) 2, 58–61.PubMedCrossRefGoogle Scholar
  27. Bissette G., Nemeroff C. R., Decker M. W., Kizer J. S., Agid Y., and Javoy-Agid F. (1985) Alterations in regional brain concentrations of neurotensin and bombesin in Parkinson’s disease.Ann. Neurol. 17, 324–328.PubMedGoogle Scholar
  28. Bogerts B., Häntsch J., and Herzer M. (1983) A morphometric study of the dopamine-containing cell groups in the mesencephalon of normals, Parkinson patients, and schizophrenics.Biol. Psychiatry 18, 951–969.PubMedGoogle Scholar
  29. Bondareff W., Mountjoy C. Q., and Roth M. (1982) Loss of neurons of origin of the adrenergic projections to the cerebral cortex (nucleus locus ceruleus) in senile dementia.Neurology 32, 164–168.PubMedGoogle Scholar
  30. Bondareff W., Mountjoy C. Q., Roth M., Rossor M. N., Iversen L. L., Reynolds G. P. and Hauser D. L. (1987) Neuronal degeneration in locus ceruleus and cortical correlates of Alzheimer disease.Alzheimer Dis. Assoc. Disord. 1, 256–262.PubMedGoogle Scholar
  31. Bowen D. A. (1990) Treatment of Alzheimer’s disease.Br. J. Psychiatry 157, 327–330.PubMedGoogle Scholar
  32. Brooks W. J., Jarvis M. F., and Wagner C. (1989) Astrocytes as a primary locus for the conversion of MPTP into MPP+.J. Neural Transm. 76, 1–12.PubMedGoogle Scholar
  33. Burke W. J., Chung H. D., Huang J. S., Grossberg G. T. and Joh T. H. (1988) Evidence for retrograde degeneration of epinephrine neurons in Alzheimer’s disease.Ann. Neurol. 24, 532–536.PubMedGoogle Scholar
  34. Candy J. M., Perry R. H., Perry E. K., Irving D., Blessed G., Fairbairn A. F., and Tomlinson, B. E. (1983) Pathological changes in the nucleus basalis of Meynert in Alzheimer’s and Parkinson’s disease.J. Neurol. Sci. 54, 277–289.Google Scholar
  35. Candy J. M., Gascoigne A. D., Biggins A., Smith I., Perry R. H., Perry E. K., McDermott J. R., and Edwardson J. E. (1985) Somatostatin immunoreactivity in cortical and some subcortical regions in Alzheimer’s disease.J. Neurol. Sci. 71, 315–323.PubMedGoogle Scholar
  36. Carmichael S. W., Wilson R. J., Brimijoin W. S., Melton L. J., Okazaki J., Yaksh T., Ahlskog J. E., Stoddard S. L., and Tyce G. M. (1988) Decreased catecholamines in the adrenal medulla of patients with parkinsonism.New Engl. J. Med. 319, 254.Google Scholar
  37. Cash R., Dennis R., L’Heureux R., Raisman R., Javoy-Agid F., and Scatton B. (1987) Parkinson’s disease and dementia: Norepinephrine and dopamine in locus ceruleus.Neurology 37, 42–46.PubMedGoogle Scholar
  38. Chan-Palay V. (1987) Somatostatin immunoreactive neurons in the human hippocampus and cortex shown by immunogold/silver intensification on vibratome sections: Coexistence with neuropeptide Y neurons, and effects in Alzheimer-type dementia.J. Comp. Neurol. 260, 201–223.PubMedGoogle Scholar
  39. Chan-Palay V., Allen Y. S., Lang W., Haesler U., and Polak J. M. (1985) Cortical neurons immunoreactive with antisera against neuropeptide Y are altered in Alzheimer’s type dementia.J. Comp. Neurol 238, 382–390.PubMedGoogle Scholar
  40. Chan-Palay V. and Asan E. (1989a) Quantitation of catecholamine neurons in the locus coeruleus in human brains of normal young and older adults and in depression.J. Comp. Neurol. 287, 357–372.PubMedGoogle Scholar
  41. Chan-Palay V. and Asan E. (1989b) Alterations in catecholamine neurons of the locus coeruleus in senile dementia of Alzheimer type and in Parkinson’s disease with and without dementia and depression.J. Comp. Neurol. 287, 373–392.PubMedGoogle Scholar
  42. Chan-Palay V., Köhler C., Haesler U., Lang W., and Yasargil G. (1986) Distribution of altered hippocampal neurons and axons immunoreactive with antisera against Neuropeptide Y in Alzheimer’s type dementia.J. Comp. Neurol. 248, 360–375.PubMedGoogle Scholar
  43. Chan-Palay V., Köhler C., and Höchli M. (1989) Coexistence of somatostatin and neuropeptide Y in the hippocampus of patients with Alzheimer’s and Parkinson’s disease,The hippocampus—New vistas pp. 513–534, A. R. Liss, New York.Google Scholar
  44. Chinaglia G., Probst A., and Palacios J. M. (1990) Neurotensin receptors in Parkinson’s disease and progressive supranuclear palsy: An autoradiographic study in basal ganglia.Neuroscience 19, 351–360.Google Scholar
  45. Chui H. C., Mortimer J. A., Slager U., Barrow C., Bonareff W., and Webster D. D. (1986) Pathological correlates of dementia in Parkinson’s disease.Arch. Neurol. 43, 991–995.PubMedGoogle Scholar
  46. Coles S. K., Iles J. F., and Nicolopoulos-Stournaras S. (1989) The mesencephalic centre controlling locomotion in the rat.Neuroscience 28, 149–157.PubMedGoogle Scholar
  47. Constantinidis J., Bouras C., and Vallet P. G. (1988) Neuropeptides in Alzheimer’s and in Parkinson’s disease.Mt. Sinai J. Med. 55, 102–115.PubMedGoogle Scholar
  48. Cross A. J., Crow T. J., Ferier I. N., Johnson A. J., Bloom S. R. and Corsellis J. A. N. (1984) Serotonin receptor changes in dementia of the Alzheimer type.J. Neurochem. 43, 1574–1581.PubMedGoogle Scholar
  49. Crow T. J., Cross A. J., Cooper S. J., Deakin J. F., Ferrier I. N., Johnson J. A., Joseph M. H., Owen F., Poulter M., and Lofthouse R. (1984) Neurotransmitter receptors and monoamine metabolites in the brains of patients with Alzheimer-type dementia and depression, and suicides.Neuropharmacology 23, 1561–1569.PubMedGoogle Scholar
  50. Curcio C. A. and Kemper T. (1984) Nucleus raphe dorsalis in dementia of the Alzheimer type: neurofibrillary changes and neuronal packing density.J. Neuropathol. Exp. Neurol. 43, 359–368.PubMedGoogle Scholar
  51. D’Amato R. J., Zweig R. M., Whitehouse P. J., Wenk G. L., Singer H. S., Mayeux R., Price D. L., and Snyder S. H. (1987) Aminergic systems in Alzheimer’s disease and Parkinson’s disease.Ann. Neurol. 22, 229–236.PubMedGoogle Scholar
  52. Davies P. (1988) Neurochemical studies: An update on Alzheimer’s disease.J. Clin. Psychiatry 49 (Suppl.), 23–28.PubMedGoogle Scholar
  53. Davies P., Katzman R., and Terry R. D. (1980) Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer disease.Nature 288, 279.PubMedGoogle Scholar
  54. Davis G. C., Williams A. C., Markey S. P., Ebert M. H., Reichert C. M., and Kopin I. J. (1979) Parkinsonism secondary to intravenous injection of meperidine analogues.Psychiatr. Res. 1, 249–254.Google Scholar
  55. Dawbarn D., Rossor M. N., Mountjoy C. Q., Roth M., and Emson P. C. (1986) Decreased somatostatin immunoreactivity but not neuropeptide Y immunoreactivity in cerebral cortex in dementia of Alzheimer type.Neurosci. Lett. 70, 154–159.PubMedGoogle Scholar
  56. Dickson D. W., Crystal H., Mattiace L. A. (1989) Diffuse Lewy body disease: Light and electron microscopic immunocytochemistry of senile plaques.Acta Neuropathol. (Berl.) 78, 572–584.Google Scholar
  57. Dietl M. M., Probst A., and Palacios J. M. (1987) On the distribution of cholecystokinin receptor binding sites in the human brain. An autoradiographic study.Synapse 1, 169–183.PubMedGoogle Scholar
  58. Doucette R., Fisman M., Hachinski V. C., and Mersky H. (1986) Cell loss from the nucleus basalis of Meynert in Alzheimer disease.Can. J. Neurol. Sci. 13, 435–440.PubMedGoogle Scholar
  59. Dubois B., Pillon B., Lhermitte F., and Agid Y. (1990) Cholinergic deficiency and frontal dysfunction in Parkinson’s disease.Ann. Neurol. 28, 117–121.PubMedGoogle Scholar
  60. Dubois B., Hauw J. J., Ruberg M., Serdaru M., Javoy-Agid F., and Agid Y. (1985) Démence et maladie de Parkinson: Correlations biochimiques et anatomo-cliniquesRev. Neurol. (Paris) 141, 184–193.Google Scholar
  61. Eadie M. J. (1963) The pathology of certain medullary nuclei in parkinsonism.Brain 86, 781–795.PubMedGoogle Scholar
  62. Epelbaum J. (1983) Somatostatin in the central nervous system: Physiology and pathological modifications.Progr. Neurobiol. 27, 63–100.Google Scholar
  63. Epelbaum J., Javoy-Agid F., Enjalbert A., Krantic S., Kordon C., and Agid Y. (1988) Somatostatin concentrations and binding sites in human frontal cortex are differently affected in Parkinson’s disease associated with dementia and supranuclear palsy.J. Neurol. Sci. 87, 167–174.PubMedGoogle Scholar
  64. Epelbaum J., Ruberg M., Moyse E, Javoy-Agid F., Dubois B., and Agid Y. (1983) Somatostatin and dementia in Parkinson’s disease.Brain Res. 278, 376–397.PubMedGoogle Scholar
  65. Esiri M. M., Pearson R. C. A., Steele J. E., Bowen D. M., and Powell T. P. S. (1990) A quantitative study of the neurofibrillary tangles and the choline acetyltransferase activity in the cerebral cortex and the amygdala in Alzheimer’s disease.J. Neurol. Neurosurg. Psychiatry 53, 161–165.PubMedGoogle Scholar
  66. Etienne P., Robitaille Y., Wood P., Gauthier S., Nair N. P. V., and Quirion R. (1986) Nucleus basalis neuronal loss, neuritic plaques and choline acetyltransferase activity in advanced Alzheimer’s disease.Neuroscience 19, 1279–1291.PubMedGoogle Scholar
  67. Ezrin-Waters C. and Resch L. (1986) The nucleus basalis of Meynert.Can. J. Neurol. Sci. 13, 8–14.PubMedGoogle Scholar
  68. Ferrier I. N. and Leake A. (1990) Peptides in the neocortex in Alzheimer’s disease and aging.Psychoneuroendocrinology 15, 89–96.PubMedGoogle Scholar
  69. Foote S. L., Bloom F. E., and Aston-Jones G. (1983) Nucleus locus ceruleus: New evidence of anatomical and physiological specificity.Physiol. Rev. 63, 844–914.PubMedGoogle Scholar
  70. Forno L. S. (1986) The Lewy body in Parkinson’s disease.Adv. Neurol. 45, 35–43.Google Scholar
  71. Forno L. S. (1990) Neuropathology of MPTP-induced parkinsonism in animals,Abstr., XIth International Congress of Neuropathology, Kyoto, Sept. 2–8, 1990, p. 5.Google Scholar
  72. Forno L. S. and Norville R. L. (1979) Ultrastructure of the neostriatum in Huntington’s and Parkinson’s disease.Adv. Neurol. 23, 123–135.Google Scholar
  73. Forno L. S., Gardiner R. E., and Eng L. F. (1985) Somatostatin-like immunoreactivity in the human basal ganglia (abstract).J. Neuropathol. Exp. Neurol. 44, 326.Google Scholar
  74. Forno L. S., Langston J. W., DeLanney L. E., and Irwin I. (1988) An electron microscopic study of MPTP-induced inclusion bodies in old monkey.Brain Res. 448, 150.PubMedGoogle Scholar
  75. Forno L. S., Langston J. W., DeLanney L. E., Irwin I., and Ricaurte G. A. (1986) Locus ceruleus lesions and eosinophilic inclusions in MPTP-treated monkeys.Ann. Neurol. 20, 449–455.PubMedGoogle Scholar
  76. Foster N. L., Tamminaga C. A., O’Donohue T. L., Tanimoto K., Bird E. D., and Chase T. N. (1986) Brain choline acetyltransferase activity and neuropeptide Y concentrations in Alzheimer’s disease.Neurosci. Lett. 63, 71–75.PubMedGoogle Scholar
  77. Francis P. T. and Bowen D. M. (1989) Tacrine, a drug with therapeutic potential for dementia: Postmortem biochemical evidence.Can. J. Neurol. Sci. 16, 504–510.PubMedGoogle Scholar
  78. Francis P. T., Bowen D. M., Lowe S. L., Neary D., Mann D. M. A., and Snowden J. S. (1987) Somatostatin content and release measured in cerebral biopsies from demented patients.J. Neurol. Sci. 78, 1–16.PubMedGoogle Scholar
  79. Gaspar P. and Gray F. (1984) Dementia in idiopathic Parkinson’s disease. A neuropathological study of 32 cases.Acta Neuropathol. (Berl.) 64, 43–52.Google Scholar
  80. Gaspar P., Berger B., and Lesur A. (1987) Somatostatin 28 and neuropeptide Y innervation in the septal area and related cortical and subcortical structures of the human brain. Distribution, relationship and evidence for different coexistence.Neuroscience 22, 49–73.PubMedGoogle Scholar
  81. German D. C., Dubsch M., Askari S., Speciale S. G., and Bowden D. M. (1988a) 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine-induced parkinsonian syndrome, in Macaca fascicularis: Which midbrain dopaminergic neurons are lost?Neuroscience 24, 161–174.PubMedGoogle Scholar
  82. German D. C., Manaye K., Smith W. K., Woodward D. J., and Saper C. B. (1989) Midbrain catecholaminergic loss in Parkinson’s disease: Computer visualization.Ann. Neurol. 26, 507–514.PubMedGoogle Scholar
  83. German D. C., Manaye K., Smith W. K., White C. L., Woodward D. J., and Mann D. M. A. (1990) Catecholaminergic cell loss in Parkinson’s disease: Computer image,Abstr., XIth International Congress of Neuropathology, Kyoto, Sept. 2–8, 1990, p. 76.Google Scholar
  84. German D. C., Walker B. S., Manaye K., Smith W. K., Woodward D. J., and North A. J. (1988b) The human locus coeruleus: Computer reconstruction of cellular distribution.J. Neurosci. 8, 1776–1788.PubMedGoogle Scholar
  85. German D. C., White C. L. III, and Sparkman D. R. (1987) Alzheimer’s disease: Neurofibrillary tangles in nuclei that project to the cerebral cortex.Neuroscience 21, 305–312.PubMedGoogle Scholar
  86. Gertz H. J., Cervos-Navarro J., and Ewald V. (1987) The septo-hippocampal pathway in patients suffering from dementia of Alzheimer’s type. Evidence for neuronal plasticity?Neurosci. Lett. 76, 228–232.PubMedGoogle Scholar
  87. Geula C. and Mesulam M. M. (1989) Cortical cholinergic fibers in aging and Alzheimer’s disease: A morphometric study.Neuroscience 33, 469–481.PubMedGoogle Scholar
  88. Gibb W. R. G. (1990) Juvenile parkinsonism, dopa-responsive dystonia and nigrostriatal subdivision,Abstr. XIth International Congress Neuropathology, Kyoto, Sept 2–8, 1990, p. 5.Google Scholar
  89. Gibb W. R. G., Fearnley J. M., and Lees A. J. (1990) The anatomy and pigmentation of the human substania nigra in relation to selective neuronal vulnerability.Adv. Neurol. 53, 31–34.PubMedGoogle Scholar
  90. Gibb W. R. G., Mountjoy C. Q., Mann D. M. A., and Lees A. J. (1989a) The substantia nigra and ventral tegmental areas in Alzheimer’s disease and Down’s syndrome.J. Neurol. Neurosurg. Psychiatry 52, 193–200.PubMedGoogle Scholar
  91. Gibb W. R. G., Terruli M., Lees A. J., Jenner P., and Marsden C. D. (1989b) The evolution of morphological changes in the nervous system of the common marmoset following the acute administration of MPTP.Movement Disord. 4, 53–74.PubMedGoogle Scholar
  92. Glowinski J., Michelot R., and Cheramy A. (1980) Role of striatonigral substance P in the regulation of activity of the striatonigral dopaminergic neurones.Neural Peptides and Neuronal Communication (Costa E. and Trabuchi M., eds.), pp. 51–63, Raven, New York.Google Scholar
  93. Goto S., Hirano A., and Matsumoto S. (1989) Subdivisional involvement of nigrostriatal loop in idiopathic Parkinson’s disease and striatonigral degeneration.Ann. Neurol. 26, 766–770.PubMedGoogle Scholar
  94. Goto S., Hirano A., and Matsumoto S. (1990) Immunohistochemical study of the striatal efferents and nigral dopaminergic neurons in parkinsonism-dementia complex on Guam in comparison with those in Parkinson’s and Alzheimer’s diseases.Ann. Neurol. 27, 520–527.PubMedGoogle Scholar
  95. Goudsmit E., Hofman M. A., Fliers E., and Swaab D. F. (1990) The supraoptic and paraventricular nuclei of the human hypothalamus in relation to sex, and Alzheimer’s disease.Neurobiol. Aging 11, 529–536.PubMedGoogle Scholar
  96. Grafe M. R., Forno L. S., and Eng L. F. (1985) Substance P and met-enkephalin immunoreactivity in Parkinson’s, Huntington’s and Alzheimer’s disease.J Neuropathol. Exp. Neurol. 44, 47–59.PubMedGoogle Scholar
  97. Graybiel A. M. (1986) Neuropeptides in the basal ganglia,Neuropeptides in Neurologic and Psychiatric Disease (Martin J. B. and Barchas J. eds.), pp. 135–161, Raven, New York.Google Scholar
  98. Graybiel A. M. (1989) Dopaminergic and cholinergic systems in the striatum.Neural mechanisms in disorders of movement (Crossman A. and Sambrook M. A., eds.), Libbey, London.Google Scholar
  99. Graybiel, A. M., Hirsch E. C., and Agid Y. (1990) The nigrostriatal system in Parkinson’s disease.Adv. Neurol. 53, 17–29.PubMedGoogle Scholar
  100. Guiloff, R. J., George R. J. and Marsden D. C. (1980) Reversible supranuclear ophthalmoplegia associated with parkinsonism.J. Neurol. Neurosurg. Psychiatry 43, 352–354.Google Scholar
  101. Halliday G. M., Blumbergs P. C., Cotton R. G. H., Blessing W. W., and Geffen L. B. (1990a) Loss of brainstem serotonin- and substance P-containing neurons in Parkinson’s disease.Brain Res. 510, 104–107.PubMedGoogle Scholar
  102. Halliday G. M., Blumbergs P. C., Cotton R. G. H., Howe P. R. C., Blessing W. W., and Geffen L. B. (1990b) Neuropathology of immunohistochemically identified brainstem neurons in Parkinson’s disease.Ann. Neurol. 27, 373–385.PubMedGoogle Scholar
  103. Halliday G. M., Gai, W. P., Blessing W. W., and Geffen L. B. (1990c) Substance P-containing neurons in the pontomesencephalic tegmentum of the human brain.Neuroscience 39, 81–96.PubMedGoogle Scholar
  104. Hallanger A. E., Levey A. L., Lee H. J., Rye D. B., and Wainer B. H. (1987) The origins of cholinergic and other subcortical afferents to the thalamus in the rat.J. Comp. Neurol. 262, 105–124.PubMedGoogle Scholar
  105. Hassler R. (1938) Zur Pathologie der Paralysis agitans und des postenzephalitischen Parkinsonismus.J. Psychol. Neurol. (Lpz.) 48, 387–476.Google Scholar
  106. Hedreen J. C., Struble R. G., Whitehouse P. J., and Price D. L. (1984) Topography of the magnocellular basal forebrain system in human brain.J. Neuropathol. Exp. Neurol. 31, 1–21.Google Scholar
  107. Heilig C. W., Knopman D. S., Mastri A. R., and Frey W. (1985) Dementia without Alzheimer pathology.Neurology 35, 762–765.PubMedGoogle Scholar
  108. Hertz L. (1989) Is Alzheimer’s disease an anterograde degeneration, originating in the brainstem, and disrupting metabolic and functional interactions between neurons and glial cells?Brain Res. Rev. 14, 335–353.PubMedGoogle Scholar
  109. Hirsch E. C., Graybiel A. M., and Agid Y. A. (1988) Melanized dopaminergic neurons are differently susceptible to degeneration in Parkinson’s disease.Nature 334, 345–348.PubMedGoogle Scholar
  110. Hirsch E. C., Graybiel A. M., Duyckaerts C., and Javoy-Agid F. (1987) Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson’s disease and progressive supranuclear palsy.Proc. Nat. Acad. Sci. USA 84, 5976–5980.PubMedGoogle Scholar
  111. Hökfelt T., Millhorn D., Seroogy K., Tsuruo Y., Ceccatelli S., Lindh B., Meister B., Melander T., Schalling M., Bartfai T., and Terenius L. (1987) Coexistence of peptides with classical neurotransmitters.Experientia 43, 768–780.PubMedGoogle Scholar
  112. Hornykiewicz O. (1975) Parkinson’s disease and its chemotherapy.Biochem. Pharmacol. 24, 1061–1065.PubMedGoogle Scholar
  113. Hornykiewicz O. (1989) The neurochemical basis of the pharmacology of Parkinson’s disease,Drugs for the Treatment of Parkinson’s Disease (Calne D. B., ed.),Handbook of Experimental Pharmacology vol. 88, pp. 185–204, Springer, Berlin.Google Scholar
  114. Hornykiewicz O., Pifl C., Kish S. J., Shannak K., and Schingnitz G. (1989) Biochemical changes in idiopathic, Parkinson’s disease, aging, and MPTP parkinsonism: Similarities and differences,Parkinsonism and Aging (Calne, D. B., et al., eds.), pp. 57–67, Raven, New York.Google Scholar
  115. Hunter S. (1985) The rostral mesencephalon in Parkinson’s and Alzheimer’s disease.Acta Neuropathol. (Berl.) 68, 326–334.Google Scholar
  116. Ichimija Y., Arai H., Kosaka K., and Iizuka R. (1986) Morphological and biochemical changes in the cholinergic and monoaminergic system in Alzheimer-type dementia.Acta Neuropathol. (Berl.) 70, 112–116.Google Scholar
  117. Imai H., Steindler D. A., and Kitai S. (1987) The organization of divergent axonal projections from the midbrain raphe nuclei in the rat.J. Comp. Neurol. 243, 363.Google Scholar
  118. Ingram V. M., Koenig J. H., Miller C. H., Moore H. E., Blanchard B., and Perry D. E. (1987) The locus coeruleus: Computer assisted 3-dimensional analysis of degeneration in Alzheimer’s and Down’s disease,Alzheimer’s Disease: Advances in Basic Research and Therapy (Wurtman R. J., Corkin, S. H., and Growden J. H. eds.), Center for Brain Science and Metabolism Charitable Trust, Cambridge, pp. 435–440.Google Scholar
  119. Javoy-Agid F., Hirsch E. C., Dumas S., Duyckaerts C., Mallet J., and Agid Y. (1990) Decreased tysosine hydroxylase messenger RNA in the surviving dopamine neurons of the substantia nigra in Parkinson’s disease: An in situ hybridization study.Neuroscience 38, 245–253.PubMedGoogle Scholar
  120. Javoy-Agid F., Ploska A., and Agid Y. (1981) Microtopography of tyrosine hydroxylase, glutamic adic decarboxylase and choline acetyltransferase in the substantia nigra and ventral tegmental area of control and parkinsonian brain.J. Neurochem. 37, 1218–1227.PubMedGoogle Scholar
  121. Javoy-Agid F., Ruberg M., Taquer H., Bobobza B., and Agid Y. (1984) Biochemical neuropathology of Parkinson’s disease.Adv. Neurol. 40, 189–197.PubMedGoogle Scholar
  122. Jellinger K. (1986) Overview of morphological changes in Parkinson’s disease.Adv. Neurol. 45, 1–18.Google Scholar
  123. Jellinger K. (1987) The pathology of parkinsonism,Movement Disorders 2 (Marsden C. D. and Fahn St., eds.), pp. 124–165, Butterworth, London.Google Scholar
  124. Jellinger K. (1988) The pedunculopontine nucleus in Parkinson’s disease, supranuclear palsy and Alzheimer’s disease.J. Neurol. Neurosurg. Psychiatry 51, 540–544.PubMedGoogle Scholar
  125. Jellinger K. (1989) Pathology of Parkinson’s syndrome,Drugs for the Treatment of Pakinson’s Disease (Calne, D. B., ed.), pp. 47–112, Springer, Berlin.Google Scholar
  126. Jellinger K. (1990a) Changes in subcortical nuclei in Parkinson’s disease,Function and Dysfunction of the Basal Ganglia (Franks A. J., Ironside J. W., et al., eds.), pp. 69–94, Manchester University Press, Manchester, NY.Google Scholar
  127. Jellinger K. (1990b) New developments in the pathology of Parkinson’s diseaseAdv. Neurol. 53, 1–16.PubMedGoogle Scholar
  128. Jellinger K. (1990c) Morphology of Alzheimer’s disease and related disorders,Alzheimer’s Disease: Epidemiology, Neurochemistry and Clinics (Beckmann H., Maurer M., Riederer P., eds.),Key Topics in Brain Research, pp. 67–77, Springer, Wien.Google Scholar
  129. Jellinger K. and Paulus W. (1990) Bedeutung der Nigraveränderungen bei Parkinson-Syndromen,Parkinson-Krankheit und Nigraprozeß, (Fischer, P.-A., ed.), pp. 3–27 Basle: Ed. Roche.Google Scholar
  130. Jenner P. and Marsden C. D. (1990) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): An update on its relevance to the cause and treatment of Parkinson’s disease,Function and Dysfunction of the Basal Ganglia (Franks A. J., et al., eds.), pp. 140–160, Manchester University Press, Manchester, NY.Google Scholar
  131. Juncos J. L., Hirsch E. C., Malessa S., Duyckaerts C., Hersh L. B., and Agid Y. (1991) Mesencephalic cholinergic nuclei in progressive supranuclear palsy.Neurology 41, 25–30.PubMedGoogle Scholar
  132. Katzman R., Terry R., DeTeresa R., Brown T., Davies P., Fuld P., Renbing X., and Peck A. (1988) Clinical, pathological, and neurochemical changes in dementia: A subgroup with preserved mental status and numerous cortical plaques.Ann. Neurol. 23, 138–144.PubMedGoogle Scholar
  133. Kelly M. and Kowall N. (1989) Corticotropin-releasing factor immunoreactive neurons persist throughout the brain in Alzheimer’s disease.Brain Res. 501, 392.Google Scholar
  134. Kish S. J., Shannak K., and Hornykiewicz O. (1988) Uneven patterns of dopamine loss in the striatum of patients with Parkinson’s disease.N. Engl. J. Med. 318, 876–880.PubMedGoogle Scholar
  135. Köhler C., Erikson L. G., Davies S., and Chan-Palay V. (1987) Colocalization of neuropeptide tyrosine and somatostatin immunoreactivity in neurons of individual hippocampal subfields in rat.Neurosci. Lett. 78, 1–6.PubMedGoogle Scholar
  136. Konradi C., Svoma E., Jellinger K., Riederer P., Denney R. M. (1988) Topographic immunocytochemical mapping of monoamine oxidase A, monoamine oxidase B and tyrosine hydroxylase in human postmortem brain stem.Neuroscience 26, 791–802.PubMedGoogle Scholar
  137. Kopin I. J. and Schoenberg D. G. (1988) MPTP in animal models of Parkinson’s disease.Mt. Sinai Med. J. 55, 43–49.Google Scholar
  138. Korczyn A. D. (1989) Autonomic nervous system screening in patients with early Parkinson’s disease,Early Diagnosis and Preventive Therapy in Parkinson Disease (Przuntek H. and Riederer P., eds.), pp. 41–48, Springer, Wien-New York.Google Scholar
  139. Kowall N. W., and Beal M. F. (1988) Cortical somatostatin, neuropeptide Y, and NADPH diaphorase neurons: Normal anatomy and alterations in Alzheimer’s disease.Ann. Neurol. 23, 105–114.PubMedGoogle Scholar
  140. Kubota Y., Inagaki S., and Kito S. (1986) Innervation of substance P neurons by catecholaminergic terminals in the neostriatum.Brain Res. 375, 163–167.PubMedGoogle Scholar
  141. Langston J. W. and Irwin I. (1989) Pyridine toxins,Drugs for the treatment of Parkinson’s Disease (Calne D. B., ed.), pp. 205–226., Springer, Berlin-New York.Google Scholar
  142. Lewy F. H. (1913) Zur pathologischen Anatomie der Paralysis agitans.Dtsch. Z. Nervenheilk. 50, 50–55.Google Scholar
  143. Li S. J., Sivam S. P., McGinty J. F., Huang Y. S. and Hong J. S. (1987) Dopaminergic regulation of tachykinin metabolism in the striatonigral pathway.J. Pharmacol. Exp. Ther. 243, 792–798.PubMedGoogle Scholar
  144. Llorens-Cortes C., Javoy-Agid F., Agid Y, Taquet H., and Schwartz J. C. (1984) Enkephalinergic markers in substantia nigra and caudate nucleus from parkinsonian subjects.J Neurochem. 43, 874–877.PubMedGoogle Scholar
  145. Loughlin S. E., Foote S. L., and Bloom F. E. (1986) Efferent projections of nucleus locus coeruleus: Topographic organization of cells of origin demonstrated by three-dimensional reconstruction.Neuroscience 18, 291–306.PubMedGoogle Scholar
  146. Loew-Hummel P., Gertz H.-J. Ferszt R., and Cervos-Navarro J. (1989) The basal nucleus of Meynert revisited.Arch. Gerontol. Geriatr. 8, 21–27.Google Scholar
  147. McGeer E. G., and McGeer P. L. (1989) Biochemical neuroanatomy of the basal ganglia,Drugs for the Treatment of Parkinson’s Disease (Calne D. B., ed.), pp. 112–148,Handbook of Experimental Pharmacology vol. 88, Springer, Wien-New York.Google Scholar
  148. McGeer P. L., McGeer E. G., and Suzuki J. (1984) Aging, Alzheimer’s disease, and the cholinergic system in the basal forebrain.Neurology 34, 741–745.PubMedGoogle Scholar
  149. Malessa S., Hirsch E. C., Cerver P., Duyckaerts C., and Agid Y. (1990) Catecholaminergic systems in the medulla oblongata in Parkinsonian syndromes. A quantitative immunohistochemical study in Parkinson’s disease, progressive supranuclear palsy, and striatonigral degeneration.Neurology 40, 1739–1742.PubMedGoogle Scholar
  150. Maloteaux J. M., Laterre E. C., Ladurot P. M., Javoy-Agid F., and Agid Y. (1988) Decrease of serotonin-R-2 receptors in temporal cortex of patients with Parkinson’s disease and progressive supranuclear palsy.Movement Disord. 3, 255–262.PubMedGoogle Scholar
  151. Mann D. M. A. and Yates P. O. (1983) Pathological basis for neurotransmitter changes in Parkinson’s disease.Neuropathol Appl. Neurobiol. 9, 3–19.PubMedGoogle Scholar
  152. Mann D. M. A. and Yates P. O. (1986) Neurotransmitter deficits in Alzheimer’s disease and other dementing disorders.Hum. Neurobiol. 5, 147–156.PubMedGoogle Scholar
  153. Mann D. M. A., Yates P. O., and Hawkes J. (1983) The pathology of the human locus coeruleus.Clin. Neuropathol. 2, 1–7.PubMedGoogle Scholar
  154. Mann D. M. A., Yates P. O., and Marcyniuk B. (1984) Changes in nerve cells of the nucleus basalis of Meynert in Alzheimer’s disease and their relationship to the accumulation of lipofuscin pigment.Mech. Ageing Dev. 25, 189–204.PubMedGoogle Scholar
  155. Mann D. M. A., Yates P. O., and Marcyniuk B. (1985a) Correlation between senile plaques and neurofibrillary tangle counts in the cerebral cortex and neuron al counts in cortex and subcortical structures in Alzheimer’s disease.Neurosci. Lett. 56, 51–55.PubMedGoogle Scholar
  156. Mann D. M. A., Yates P. O., and Marcyniuk B. (1985b) Changes in Alzheimer’s disease in the magnocellular neurons of the supraoptic and paraventricular nuclei and their relationship to the noradrenergic deficit.Clin. Neuropathol. 4, 127.PubMedGoogle Scholar
  157. Mann D. M. A., Yates P. O., and Marcyniuk B. (1987) Dopaminergic systems in Alzheimer’s disease and Down’s syndrome at middle age.J. Neurol. Neurosurg. Psychiatry 50, 341–344.PubMedGoogle Scholar
  158. Marcyniuk B., Mann D. M. A., and Yates P. O. (1986) Loss of nerve cells from locus coeruleus in Alzheimer’s disease is topographically arranged.Neurosci. Lett. 64, 247–252.PubMedGoogle Scholar
  159. Marcyniuk B., Mann D. M. A., and Yates P. O. (1989) The topography of nerve cell loss from the locus coeruleus in elderly persons.Neurobiol Aging 10, 5–9.PubMedGoogle Scholar
  160. Masullo C., Pocchiari M., Mariotti P., Macchi G., Garruto R. M., Gibbs C. J. Jr., et al. (1989) The nucleus basalis of Menyert in Parkinson-dementia of Guam: A morphometric study.Neuropathol. Appl. Neurobiol. 15, 193–206.PubMedGoogle Scholar
  161. Matzuk M. M. and Saper C. B. (1985) Preservation of hypothalamic dopaminergic neurons in Parkinson’s disease.Ann. Neurol. 18, 552–555.PubMedGoogle Scholar
  162. Mauborgne A., Javoy-Agid F., Legrand J. C., Agid Y., and Cesselin F. (1983) Decrease of substance P-like immunoreactivity in the substantia nigra and palidum of parkinsonian brains.Brain Res. 268, 167–170.PubMedGoogle Scholar
  163. Mayeux R. (1990) The “serotonin hypothesis” for depression in Parkinson’s disease.Adv. Neurol. 53, 163–166.PubMedGoogle Scholar
  164. Meltzer H. (1989) Serotonergic dysfunction in depression.Br. J. Psychiatry 155, 25–31.Google Scholar
  165. Mesulam M. M., and Geula C. (1988) Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: Observations based on the distribution of acetylcholinesterase and choline acetyltransferase.J. Comp. Neurol. 275, 216–260.PubMedGoogle Scholar
  166. Mesulam M. M and Mufson E. J. (1984) Neuronal inputs into the nucleus basalis of the substantia innominata (Ch4) in the rhesus monkey.Brain 107, 253–274.PubMedGoogle Scholar
  167. Mitchell I. J., Aambrook M. A., Jackson A., Clarke C. E., Robertson R. G., Boyce S., and Crossman A. R. (1990) Basal ganglia function in experimental movement disorders,Function and Dysfunction in the Basal Ganglia (Franks A. J. et al., eds.), pp. 94–109, Manchester University Press, Manchester, NY.Google Scholar
  168. Mizutani T., Aki M., Shiozawa R., Tanabe H. Uchigata M. Oda M., Endo Y., and Hara M. (1991) Clinico-pathologic study of dementia in Parkinson’s disease with special reference to degeneration of the locus ceruleus.Acta Neuropathol. (Berl.) 81, in press.Google Scholar
  169. Moossy J., Zubenko G. B., Martinez J., and Rao G. (1988) Bilateral symmetry of morphologic lesions in Alzheimer’s disease.Arch. Neurol. 45, 251–254.PubMedGoogle Scholar
  170. Mufson E. J., Mash D., and Hersh L. B. (1988) Neurofibrillary tangles in cholinergic pedunculopontine nucleus in Alzheimer’s disease.Ann. Neurol. 24, 623–629.PubMedGoogle Scholar
  171. Mufson E. J., Presley L. N., and Kordower J. H. (1991) Nerve growth factor immunoreactivity with the nucleus basalis (Hc 4) in Parkinson disease. Reduced cell numbers and co-localization with cholinergic neurons.Brain Res. 539, 19–30.PubMedGoogle Scholar
  172. Mulligan K. A. and Tork I. (1988) Serotonergic innervation of the cat cerebral cortex.J. Comp. Neurol. 270, 86–110.PubMedGoogle Scholar
  173. Nagatsu T. (1990) Changes of tyrosine hydroxylase in parkinsonian brains and in the brains of MPTP treated mice.Adv. Neurol. 53, 207–214.PubMedGoogle Scholar
  174. Nakano I. and Hirano A. (1984) Neuron loss in the nucleus basalis of Meynert in Parkinson-dementia complex of Guam.Ann. Neurol. 13, 87–91.Google Scholar
  175. Nakashima S. and Ikuta F. (1984) Tyrosine hydroxylase proteins in Lewy bodies of parkinsonism and senile brain.J. Neurol. Sci. 66, 91–96.PubMedGoogle Scholar
  176. Nemeroff C. B., Kizer J. S., Reynolds G. P., and Bisette G. (1989) Neuropeptides in Alzheimer’s disease: A postmortem study.Regul. Pept. 25, 123–130.PubMedGoogle Scholar
  177. Nieuwenhuys R., Voogd J., and Van Huijzen C. (1988)The Human Central Nervous System. A Synopsis and Atlas 3rd Ed., (Springer, Berlin).Google Scholar
  178. Olszewski J. and Baxter D. (1982)Cytoarchitecture of the Human Brain Stem 2nd Ed. (Karger, Basel, New York).Google Scholar
  179. Palmer A. M., Francis P. T., Bowen D. M., Benton J. S., Neary D., Mann D. M., and Swanson J. S. (1987) Catecholaminergic neurons assessed ante-mortem in Alzheimer’s disease.Brain Res. 414, 365–375.PubMedGoogle Scholar
  180. Paulus W. and Jellinger K. (1991) The neuropathologic basis of different clinical subgroups of Parkinson’s disease.J. Neuropathol Exp. Neurol., in press.Google Scholar
  181. Pearson R. C. A., and Powell T. P. S. (1987) Anterograde vs retrograde degeneration of the nucleus basalis medialis in Alzheimer’s disease.J. Neural Transm. (Suppl.) 24, 139–146.Google Scholar
  182. Pearson R. C. A., Sofroniew M. V., Cuello A. C., Powell T. P., Eckenstein, F., Esiri M. M., and Wilcock G. K. (1983) Persistence of cholinergic neurons in the basal nucleus of a brain with senile dementia of the Alzheimer’s type.Brain Res. 289, 375–379.PubMedGoogle Scholar
  183. Perry E. K., Smith C. J., Court J. A., and Perry R. H. (1990a) Cholinergic nicotinic and muscarinic receptors in dementia of Alzheimer, Parkinson and Lewy body types.J Neural Transm. (P-D Sect.) 2, 149–158.Google Scholar
  184. Perry E. K., Smith C. J., Perry R. H., Johnson M., and Fairbairn A. F. (1989) Nicotinic (3H-nicotine) receptor binding in human brain: Characterization and involvement in cholinergic neuropathology.Neurosci. Res. Commun. 5, 117–124.Google Scholar
  185. Perry E. K., Curtis M., Dick D. J., Atack J. H, Bloxham C. A., Blessed G., Fairbairn A., Tomlinson B. E., and Perry R. H. (1985) Cholinergic correlates of cognitive impairment in Parkinson’s disease: Comparison with Alzheimer’s disease.J. Neurol. Neurosurg. Psychiatry 48, 413–421.PubMedGoogle Scholar
  186. Perry E. K., Tomlinson B. E., Blessed G., Perry R. H., Cross A. J., and Crow T. J. (1981) Neuropathological and biochemical observations on the noradrenergic system in Alzheimer’s disease.J. Neurol. Sci. 51, 279–287.PubMedGoogle Scholar
  187. Perry R. H. (1986) Alzheimer’s disease: Recent advances in neuropathology.Br. Med. Bull. 42, 45–50.Google Scholar
  188. Perry R. H., Irving D., Blessed G., Fairbairn A. F., and Perry E. K. (1990b) Senile dementia of Lewy body type: A clinically and neuropathologically distinct form of Lewy body dementia in the elderly.J. Neurol. Sci. 95, 119–139.PubMedGoogle Scholar
  189. Perry R. H., Tomlinson B. E., Candy J. M., Blessed G., Foster J. F., Bloxham C. A., and Perry E. R. (1983) Cortical cholinergic deficit in mentally impaired Parkinsonian patients.Lancet 2, 311–315.Google Scholar
  190. Perry R. H., Perry E. K., Smith C. J., Xuereb J. H., Irving D., Whitford C. A. Candy J. M., and Cross A. J. (1987) Cortical neuropathological and neurochemical substrates of Alzheimer’s and Parkinson’s disease.J. Neural Transm. (Suppl.) 24, 131.Google Scholar
  191. Probst A., Cortex R., Ulrich J., and Palacios J. M. (1988) Differential modification of muscarinic cholinergic receptors in the hippocampus of patients with Alzheimer’s disease: An autoradiographic study.Brain Res. 450, 190–201.PubMedGoogle Scholar
  192. Quirion R., Martel J. C., Robitaille Y. Etienne P., Wood P., Nair N. P. V. and Gauthier S. (1986) Neurotransmitter and receptor deficits in senile dementia of the Alzheimer type.Can. J. Neurol. Sci. 13, 503–510.PubMedGoogle Scholar
  193. Ransmayer G., Cervera P., Hirsch E. Ruberg M., Hersh L. B., Duyckaerts C., Hauw J. J., Deluneau F., and Agid Y. (1989) Choline acetyltransferase-like immunoreactivity in the hippocampal formation of control subjects and patients with Alzheimer’s disease.Neuroscience 32, 701–714.Google Scholar
  194. Rascol O., Clanet M., Motastruc J. L., Simonetta M., Soulier-Esteve M. J., Doyon B., and Rascol A. (1989) Abnormal ocular movements in Parkinson’s disease.Brain 112, 1193–1214.PubMedGoogle Scholar
  195. Reid M. S., Herrera-Marschitz M., Hökfelt T., Lindefors N., Persson H., and Ungerstedt U. (1990) Striatonigral GABA dynorphin, substance P and neurokinin-A modulation of nigrostriatal release. Evidence for direct regulatory mechanisms.Exp. Brain Res. 82, 293–304.PubMedGoogle Scholar
  196. Reinikainen R., Paljärvi L., and Huusekonnen M. (1988b) A postmortem study of noradrenergic, serotonergic and GABAergic neurones in Alzheimer’s disease.J. Neurol. Sci. 84, 101–115.PubMedGoogle Scholar
  197. Reinikainen K. J., Riekkinen P. J., and Paljärvi L (1988a) Cholinergic deficit in Alzheimer’s disease: A study based on CSF and autopsy data.Neurochem. Res. 13, 135–146.PubMedGoogle Scholar
  198. Ricaurte G. A., Irwin I., Forno L. S., DeLanney L. E., Langston E. B., and Langston J. W. (1987) Aging and MPTP-induced degeneration of dopaminergic neurons in the substantia nigra.Brain Res. 403, 43–51.PubMedGoogle Scholar
  199. Riederer P., Rausch W. D., Birkmayer W., Jellinger K., and Seeman D. (1978) CNS modulation of adrenal tyrosine hydroxylase in Parkinson’s disease and metabolic encephalopathies.J. Neural Transm. (Suppl.) 14, 121–133.Google Scholar
  200. Riederer P., Sofic E., Konradi C., Kornhuber J., Beckmann H., Dietl M., Moll G., and Hebenstreit G. (1990) The role of dopamine in the control of neurobiological functions,The Role of Brain Dopamine (Flückinger E., Müller E. E., and Thorner M. O., eds.), pp. 1–17, Springer, Berlin.Google Scholar
  201. Rinne J. O., Paljärvi L., and Rinne U. K. (1987) Neuronal size and density in the nucleus basalis Meynert in Alzheimer’s disease.J. Neurol. Sci. 79, 67–76.PubMedGoogle Scholar
  202. Rinne J. O., Lönnberg P., Marjamäki P., and Rinne U. K. (1989b) Brain muscarinic receptor subtypes are differentially affected in Alzheimer’s disease and Parkinson’s disease.Brain Res. 483, 402–406.PubMedGoogle Scholar
  203. Rinne J. O., Rummukainien J., Paljärvi L., and Rinne U. K. (1989a) Dementia in Parkinson’s disease is related to neuronal loss in the medial substantia nigra.Ann. Neurol. 26, 47–50.PubMedGoogle Scholar
  204. Rinne U. K., Rinne J. K., Rinne J. O., Laakso K., Tenovuo L., Lönnberg P., Koskinen V. (1983) Brain enkephalin receptors in Parkinson’s disease.J. Neural Transm. (Suppl.) 19, 163–171.Google Scholar
  205. Rogers J. D., Brogan D., and Mirra S. S. (1985) The nucleus basalis Meynert in neurological disease: A quantitative morphological study.Ann. Neurol. 17, 163.PubMedGoogle Scholar
  206. Rossor M. N., Iversen L. I., and Reynolds G. P. (1984) Neurochemical characteristics of early and late onset types of Alzheimer’s disease.Br. Med. J. 288, 961–964.Google Scholar
  207. Ruberg M. and Agid Y. (1988) Dementia in Parkinson’s disease,Handbook of Psychopharmacology, vol. 20 (Iversen L., et al., eds.), Plenum, New York.Google Scholar
  208. Ruberg M., Javoy-Agid F., Hirsch E., Scatton B., LHeureux R., Hauw J. J., Duyckaerts C., Gray F., Morel-Maroger A., and Rascol A. (1985) Dopaminergic and cholinergic lesions in progressive supranuclear palsy.Ann. Neurol. 18, 523–529.PubMedGoogle Scholar
  209. Sadoul J. L., Checler F., Kitabki P., Rostene W., Javoy-Agid F., and Vincent J. P. (1984) Loss of high affinity neurotensin receptors in substantia nigra from parkinsonian subjects.Biochem. Biophys. Res. Commun. 125, 395–404.PubMedGoogle Scholar
  210. Saper C. B., German D. C., and White C. L. (1985) Neuronal pathology in the nucleus basalis of Meynert and associated cell groups in senile dementia of the Alzheimer’s type. Possible role in cell loss.Neurology 35, 1089–1095.PubMedGoogle Scholar
  211. Scarnati E., Gasbarri A., Campana E., and Pacitti C. (1987) The organization of the nucleus tegmenti pedunculopontine neurons projecting to basal ganglia and thalamus.Neurosci. Lett. 79, 11–16.PubMedGoogle Scholar
  212. Scatton B., Dennis T., L’Heureux R., Montofort J., Duyckaerts C., and Javoy-Agid F. (1986) Degeneration of noradrenergic and serotonergic but not dopaminergic neurons in lumbar spinal cord of parkinsonian patients.Brain Res. 380, 181–185.PubMedGoogle Scholar
  213. Schneider J. S., Yuwiler A., and Markham C. H. (1987) Selective loss of subpopulations of ventral mesencephalic dopaminergic neurons in the monkey following exposure to MPTP.Brain Res. 411, 144–150.PubMedGoogle Scholar
  214. Shin R.-W., Kitamoto T., and Tateishi J. (1991) Modified tau is present in younger nondemented persons: A study of subcortical nuclei in Alzheimer’s disease and progressive supranuclear palsy.Acta Neuropathol. (Berl.) 81, in press.Google Scholar
  215. Sirvio J., Rinne J. O., Valjakka A., Rinne U. K., Riekkinen P. J., and Paljärvi L. (1989) Different forms of brain acetylcholinesterase and muscarinic binding in Parkinson’s disease.J. Neurol. Sci. 90, 23–32.PubMedGoogle Scholar
  216. Sofic E., Moll G., Riederer P., Jellinger K., and Gabriel E. (1988) Monoaminerge Läsion bei seniler Demenz vom Alzheimer-Typ (SDAT).Biologische Psychiatrie. Synopsis 1986/87 (Beckmann H., and Laux G., eds.), pp. 151–157, Springer, Berlin.Google Scholar
  217. Sparks D. L., DeKosky S. T., and Markesberry W. (1988) Alzheimer’s disease. Aminergic-cholinergic alterations in hypothalamus.Arch. Neurol. 45, 994–999.PubMedGoogle Scholar
  218. Steinbush H. W. M. (1984) Serotonin-immunoreactive neurons and their projections in the CNS,Handbook of Chemical Neuroanatomy, vol. 3: Classical Transmitters and Transmitter Receptors in CNS, Part II (Björklund A., Hökfelt T., and Kuhar M. J., eds.), pp. 68–125, Elsevier, Amsterdam-New York.Google Scholar
  219. Steriade M. and Biesold D. (1990)Brain Cholinergic Systems, Oxford University Press.Google Scholar
  220. Studler J. M. and Javoy-Agid F. (1985) Cholecystokinin octapeptide immunoreactivity distribution in human brain.Ann. NY Acad. Sci. 448, 656–659.Google Scholar
  221. Swaab D. F., Fliers E., and Goudsmit E. (1986) Differential cell loss in (peptide) neurons in the anterior hypothalamus with aging and Alzheimer’s disease,Neurology (Poeck K., Freund H. J., Gänshirt H., eds.), p. 119–125, Springer.Google Scholar
  222. Swanson L. W. (1982) Normal hippocampal circuitry.Neurosci. Res. Progr. Bull. 9, 624–637.Google Scholar
  223. Tabaton M., Schenone A., Romagnoli P., and Mancardi G. L. (1985) A quantitative and ultrastructural study of substantia nigra and nucleus centralis superior in Alzheimer’s disease.Acta Neuropathol. (Berl.) 68, 218–223.Google Scholar
  224. Tagliavini F. and Pilleri G. (1984) The basal nucleus of Meynert in cerebral aging and degenerative dementias,Brain Pathology (Tagliavini F. and Pilleri G., eds.), The basal nucleus of Meynert in cerebral aging and degenerative dementias,Brain Pathology (Tagliavini F. and Pilleri G., eds.), vol. 1, pp. 181–218. Bern.Google Scholar
  225. Tagliavini F., Pilleri G., Bouraas C., and Constantinidis J. (1984) The nucleus basalis of Meynert in cerebral aging and degenerative dementias,Brain Pathology (Tagliavini F., and Pilleri G., eds.) pp. 181–218. Bern.Google Scholar
  226. Taquet H., Javoy-Agid F., Giraud P., Legrand J. D., Agid Y., and Cesselin F. (1985) Dynorphin levels in parkinsonian patients.Brain Res. 341, 390–392.PubMedGoogle Scholar
  227. Taquet H., Nomoto M., Rose S., Jenner P., Javoy-Agid F., Mauborgne A., Benoliel J. J., Marsden C. D., Legrand J. C., Agid Y., Hamon M., and Cesselin F. (1988) Levels of MET-Enkephalin, LEU-Enkephalin, Substance P and Cholecystokinin in the Brain of the Common Marmoset Following Long Term 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Treatment.Neuropeptides 12, 105–110.PubMedGoogle Scholar
  228. Tenovuo O., Rinne J. K., and Viljanen M. K. (1984) Substance P immunoreactivity in post-mortem parkinsonian brain.Brain Res. 303, 113–116.PubMedGoogle Scholar
  229. Tenovuo O., Kolhinen A., Laihinen A., and Rinne U. K. (1990) Brain substance P receptors in Parkinson’s disease.Adv. Neurol. 53, 145–148.PubMedGoogle Scholar
  230. Terry R. D., Masliah E., Salmon D., and DeTeresa H. (1990) Structure-function correlations in Alzheimer’s disease (abstract).J. Neuropathol. Exp. Neurol. 49, 318.Google Scholar
  231. Tomlinson B. E. (1989) The neuropathology of Alzheimer’s disease—issues in need of resolution.Neuropathol. Appl. Neurobiol. 15, 491–512.PubMedGoogle Scholar
  232. Tomlinson B. E., Irving D., and Blessed G. (1981) Cell loss in the locus coeruleus in senile dementia of the Alzheimer type.J. Neurol. Sci. 49, 419–428.PubMedGoogle Scholar
  233. Tomonoga M. (1983) Neuropathology of the locus coeruleus: A semiquantitative study.J. Neurol. 230, 231–240.Google Scholar
  234. Torack R. M. and Morris J. C. (1986) Mesocorticolimbical dementia.Arch. Neurol. 43, 1074–1078.PubMedGoogle Scholar
  235. Torack R. M. and Morris J. C. (1988) The association of ventral tegmental area histopathology with adult dementia.Arch. Neurol. 45, 497–501.PubMedGoogle Scholar
  236. Uhl G. R., Hedreen J. C., and Price D. L. (1985) Parkinson’s disease: Loss of neurons from the ventral tegmental area contralateral to therapeutic surgical lesions.Neurology 35, 1215–1218.PubMedGoogle Scholar
  237. Uhl G. R., McKinney M., Hedreen J. C., White C. L., Coyle J. T., Whitehouse P. J., and Price D. L. (1982) Dementia pugilistica: Loss of basal forebrain cholinergic neurons and cortical cholinergic markers.Ann. Neurol. 12, 99–102.Google Scholar
  238. Ulfig N. (1989) Altered lipofuscin pigmentation in the basal nucleus (Meynert) in Parkinson’s disease.Neurosci. Res. 6, 456–462.PubMedGoogle Scholar
  239. Verity M. A. Roitberg B. and Kepes J. J. (1990) Mesolimbicocortical dementia: Clinico-pathological studies on two cases.J. Neurol. Neurosurg. Psychiatry 53, 492–495.PubMedGoogle Scholar
  240. Vijayshankar N. and Brody H. (1979) A quantitative study of pigmented neurons in the nuclei locus coeruleus and subcoeruleus in man as related to aging.J. Neuropathol. Exp. Neurol. 38, 490–497.Google Scholar
  241. Vogels O. J. M., Broere C. A. J., and Nieuwenhuys R. (1990a) Neuronal hypertrophy in the human supraoptic and paraventricular nucleus in aging and Alzheimer’s disease.Neurosci. Lett. 109, 62–67.PubMedGoogle Scholar
  242. Vogels O. J. M., Broere C. A. J., Ter Laak H. J., Ten Donkellar H. J., Nieuwenhuys R. and Schulte B. M. (1990b) Cell loss and shrinkage in the nucleus basalis Meynert complex in Alzheimer’s disease.Neurobiol. Aging 11, 3–13.PubMedGoogle Scholar
  243. Wakabayashi K., Takahashi H., Takeda S., Ohama E., and Ikuta F. (1988) Parkinson’s disease: The presence of Lewy bodies in Auerbach’s and Meissner’s plexuses.Acta Neuropathol. (Berl.) 76, 217–221.Google Scholar
  244. Waters C. M., Peck P., Rossor M., Reynolds G. P., and Hunt S. P. (1988) Immunocytochemical studies on the basal ganglia and substantia nigra in Parkinson’s disease and Huntington’s chora.Neuroscience 25, 419–438.PubMedGoogle Scholar
  245. Westlund K. N., Denney R. M., Kochersberger L. M., Rose R. M., and Abell C. W. (1985) Distinct monoamine oxidase A and B populations in primate brain.Science 230, 181–183.PubMedGoogle Scholar
  246. Westlund K. N., Denney R. M., Rose R., and Abell C. M. (1988) Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem.Neuroscience 25, 439–456.PubMedGoogle Scholar
  247. White O. B., Saint-Cyr J. A., Tomlinson R. D., and Sharpe J. A. (1983) Ocular motor deficits in Parkinson’s disease. I and II.Brain 106, 555–587.PubMedGoogle Scholar
  248. Whitehouse P. J., Hedreen J. C., White C. L., and Price D. L. (1983) Basal forebrain neurons in the dementia of Parkinson’s disease.Ann. Neurol. 13, 243–248.PubMedGoogle Scholar
  249. Whitehouse P. J., Vale W. W., Zweig R. M., Singer H. S., Mayeux R., Kuhar M. J., Price D. L., and DeSouza E. B. (1987) Reductions in corticotropin releasing factor-like immunoreactivity in cerebral cortex in Alzheimer’s disease, Parkinson’s disease and progressive supranuclear palsy.Neurology 37, 905–909.PubMedGoogle Scholar
  250. Whitehouse P. J., Martino A. M., Wagster M. V., Price M. L., Mayeux R., Atack J. R., and Kellar K. J. (1988) Reductions in [3H]nicotinic acetylcholine binding in Alzheimer’s disease and Parkinson’s disease: An autoradiographic study.Neurology 38, 720–723.PubMedGoogle Scholar
  251. Whitford C., Candy J., Edwardson J., and Perry J. (1988) Cortical somatostatinergic system not affected in Alzheimer’s and Parkinson’s diseases.J. Neurol. Sci. 86, 13–18.PubMedGoogle Scholar
  252. Wilcock G. K., Esiri M. M., Bowen D., and Hughes A. O. (1988) The differential involvement of subcortical nuclei in senile dementia of the Alzheimer type.J. Neurol. Neurosurg. Psychiatry 51, 842–849.PubMedGoogle Scholar
  253. Xuereb J. H., Perry E. K., Candy J. M., Bonham J. R., Perry R. H., and Marschall E. (1990) Parameters of cholinergic neurotransmission in the thalamus in Parkinson’s disease and Alzheimer’s disease.J. Neurol. Sci. 99, 185–197.PubMedGoogle Scholar
  254. Yamada T., McGeer P. L., Baimbridge K. G., and McGeer E. G. (1990) Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbinding D 28K.Brain Res. 526, 303–307.PubMedGoogle Scholar
  255. Yamamoto T. and Hirano A. (1985) Nucleus raphe dorsalis in Parkinson’s dementia complex of Guam.Acta Neuropathol. (Berl.) 67, 296–299.Google Scholar
  256. Yates C. M., Fink G. M., Bennie J. G., Gordon A., Simpson J., and Eskay R. L. (1984) Neurotensin immunoreactivity in post-mortem brain is increased in Down’s syndrome but not in Alzheimer-type dementia.J. Neurol. Sci. 67, 327–335.Google Scholar
  257. Zech M. and Bogerts B. (1985) Methionine, enkephalin and substance P in the basal ganglia of schizophrenics: A quantitative immunohistochemical comparison with Huntington and Parkinson patients.Acta Neuropathol. (Berl.) 68, 32–38.Google Scholar
  258. Zubenko G. S., Moossy J., and Kopp U. (1990) Neurochemical correlates of major depression in primary dementia.Arch. Neurol. 47, 209–214.PubMedGoogle Scholar
  259. Zubenko G. S., Moossy J., Hanin I., Martinez A. J., Rao G. R., and Kopp G. R. (1988) Bilateral symmetry of cholinergic deficits in Alzheimer’s disease.Arch. Neurol. 45, 255–259.PubMedGoogle Scholar
  260. Zweig R. M., Jankel W. R., Hedreen J. C., Mayeux R., and Price D. L. (1989a) The pedunculopontine nucleus in Parkinson’s disease.Ann. Neurol. 26, 41–46.PubMedGoogle Scholar
  261. Zweig R. M., Rose C. A., Hedreen J. C., Steele C., Cardillo J. E., Whitehouse P. J., Folstein M. F., and Price D. L. (1988a) The neuropathology of aminergic nuclei in Alzheimer’s disease.Ann. Neurol. 24, 233–242.PubMedGoogle Scholar
  262. Zweig R. M., Ross C. A., Peyser C., Cardillo J. E., Coehn M., Folstein S., and Price D. L. (1988b) The locus ceruleus and dementia in Parkinson’s disease and Huntington’s disease.Ann. Neurol. 24, 133.Google Scholar
  263. Zweig R. M., Ross C. A., Hedreen J. C., Steele C., Cardillo J. E., Whitehouse P. J., Folstein M. F., and Price D. L. (1989b) Neuropathology of aminergic nuclei in Alzheimer’s disease,Alzheimer’s disease and related disorders (Iqbal K., and Wisniewski H. M., eds.) pp. 353–365, A. R. Liss, New York.Google Scholar

Copyright information

© Humana Press 1991

Authors and Affiliations

  • Kurt A. Jellinger
    • 1
  1. 1.L. Boltzmann Institute of Clinical NeurobiologyLainz-HospitalViennaAustria

Personalised recommendations