Molecular and Chemical Neuropathology

, Volume 14, Issue 2, pp 87–97 | Cite as

Ganglioside levels in hypoxic brains from neonatal and premature infants

  • Yan Qi
  • Qi-ming Xue


In this study, 13 cases of newborn term-gestational infants and six cases of premature infants who died of hypoxia were selected for the determination of ganglioside levels in several regions of brains obtained at autopsy. Cases were divided into three groups according to the hypoxic interval and gestational age: Group A, six cases of newborn infants. The average time of hypoxia was 6.4 h. Group B, seven cases of newborn infants. The average time of hypoxia was about 71 h. Group C, six cases of premature infants. The average hypoxia time was 34.7 h. Frontal cortex, forebrain, hippocampus, and parahippocampal gyrus and cerebellum of each brain were examined. The method of Ladisch and Gillard (1985) was used to purify and quantify gangliosides.

The results showed that total gangliosides decreased significantly in three regions of cerebral hemispheres of group B and in four brain regions of group C, as compared with group A (p<0.01). The amount of gangliosides in frontal cortex in group B was lower than in group C (p<0.01). The four major gangliosides (GM1, GD1a, GD1b, and GT1b) were all reduced in cerebral hemispheres of group B and C. In hypoxic brains, the percentage of gangliosides also showed some alterations. There was less GD1a in the cerebral hemispheres of group B and the frontal cortex of group C. The amount of GD1b was also less in the frontal cortex and forebrain of group B than in group A or C. The results suggest that severe hypoxia might cause decreases in brain gangliosides that correlate to the severity of brain damage.


Frontal Cortex Premature Infant Cerebral Hemisphere Newborn Infant Chemical Neuropathology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cheresh D. A. (1985) Structural and functional properties of gangliosides antigens on human tumors of neuroectodermal origin.Surv. Synth. Pathol. Res. 4, 97–109.PubMedGoogle Scholar
  2. Cheresh D. A., Pierschbacher M. D., Herzig M. A., and Mujoo K. (1986) Disialogangliosides GD2 and GD3 are involved in the attachment of human melanoma and neuroblastoma cells to extracellular matrix protein.J. Cell Biol. 102, 688–696.PubMedCrossRefGoogle Scholar
  3. Dimpfel W., Moller W., and Mengs U. (1981) Ganglioside-induced neurite formation in cultured neuroblastoma cells, inGangliosides in Neurological and Neuromuscular Function, Development and Repair (Rapport M. M., and Gorio A., eds.), pp. 119–134, Raven, New York.Google Scholar
  4. Fishman P. H. (1988) Gangliosides as cell surface receptors and transducers of biological signals, inNew Trends in Ganglioside Research (Ledeen R. W., Hogan E. L., Tettamanti G., Yates A. J. and Yu R. K., eds.) pp. 183–201, Liviana, Padova, Italy.Google Scholar
  5. Huang K. W. (ed.) (1965) Anoxia of nervous system,Neuropathology pp. 41–57, People’s Medical, Beijing.Google Scholar
  6. Kamp P. E., den Hartog-Jager W. A., Mathuis J., de Groot P. A., de Jong J. M., and Bolhuis P. A. (1986) Brain gangliosides in the presenile dementia of Pick.J. Neurol. Neurosurg. Psychiatry 49 (8), 881–885.PubMedCrossRefGoogle Scholar
  7. Ladisch S. and Gillard B. (1985) A solvent partition method for microscale ganglioside purification.Anal. Biochem. 146, 220–231.PubMedCrossRefGoogle Scholar
  8. Ledeen R. W., Cochran F. B., Yu R. K., Samuels F. G., and Haley J. E. (1980) Gangliosides of the CNS myelin membrane.Adv. Exp. Med. Biol. 125, 167–176.PubMedGoogle Scholar
  9. Ledeen R. W. (1983) Gangliosides, inHandbook of Neurochemistry (Lajtha A., ed.) pp. 41–90, Plenum, New York.Google Scholar
  10. Markwell M. A. K., Moss J., Hom B. E., Fishman P. H., and Svennerholm L. (1986) Expression of gangliosides as receptors at the cell surface controls infection of NCTC 2071 cells by Sendai virus.Virology 155, 356–364.PubMedCrossRefGoogle Scholar
  11. Nagai Y., Momoi T., Sai-to M., Mitsuzawa F., and Ohtani S. (1976) Ganglioside syndrome, a new autoimmune neurologic disorder, experimentally induced with brain ganglioside.Neurosci. Lett. 2, 107–111.PubMedCrossRefGoogle Scholar
  12. Nagai Y. and Zwamori M. (1984) Ganglioside distribution at different levels of organization and its biological implications.Adv. Exp. Med. Biol. 174, 135–146.PubMedGoogle Scholar
  13. Pu D. F. (1981) Anoxic and ischemic cerebral impairment of newborns, inDiseases of the Nervous System in Children (Zuo Q. H. et al., eds.) pp. 480–487, People’s Medical, Beijing.Google Scholar
  14. Rapport M. M., Donnenfeld H., Brunner W., Hungund B., and Bartfeld H. (1985) Ganglioside patterns in amyotrophic lateral sclerosis brain regions.Ann. Neurol. 18, 60–67.PubMedCrossRefGoogle Scholar
  15. Seglar-Stahl K., Webster J. C., Brunngraber E. G. (1983) Changes in the concentration and composition of human brain gangliosides with aging.Gerontology 29, 161–168.CrossRefGoogle Scholar
  16. Seyfried T. N., Glaser G. H., and Yu R. K. (1978) Cerebral, cerebellar and brain stem gangliosides in mice susceptible to audiogenic seizures.J. Neurochem. 31(1), 21–27.PubMedCrossRefGoogle Scholar
  17. Seyfried T. N., Bernard D. J., and Yu R. K. (1987) Effect of Purkinje cell lose on cerebellar gangliosides in nervous mutant mice.J. Neurosci. Res. 17(13), 251–255.PubMedCrossRefGoogle Scholar
  18. Suzuki K. (1966) Ganglioside patterns of normal and pathological brains, inInborn Disorders of Sphingolipid Metabolism (Aronson, S. M. and Volk, B. W., eds.) p. 215, Pergamon, Oxford.Google Scholar
  19. Suzuki K. (1984) Gangliosides and disease.Adv. Exp. Med. Biol. 174, 407–418.PubMedGoogle Scholar
  20. Svennerholm L. (1963) Chromatographic separation of human brain gangliosides.J. Neurochem. 10, 613–623.PubMedCrossRefGoogle Scholar
  21. Svennerholm L. (1957) Quantitative estimation of sialic acids, II. A colorimetric resorcinol hydrochloric acid method.Biochim. Biophys. Acta. 24, 604–611.PubMedCrossRefGoogle Scholar
  22. Szekely A. M., Barbaccia M. L., and Costa E. (1987) Activation of specific glutamate receptor subtypes increases c-fos proto oncogene expression in primary cultures of neonatal rat cerebellar granule cells.Neuropharmacology,26, 1779–1782.PubMedCrossRefGoogle Scholar
  23. Tettamanti G., Preti A., Cestaro B., Venerando B., Lombardo A., Ghidoni R., and Sonnino S. (1980) Gangliosides, neuraminidase and sialytransferase at the nerve endings.Adv. Exp. Med. Biol. 125, 263–281.PubMedGoogle Scholar
  24. Wieraszko A., and Seifert W. (1986) Involvement of gangliosides in the synaptic transmission in the hippocampus and striatum of the rat brain, inGangliosides and Neuronal Plasticity (Tettamanti G., Ledeen R. W., Sandhoff K., Nagai Y., and Toffano G., eds.), pp. 137–151, Liviana, Padova, Italy.Google Scholar
  25. Yang S. L. (1987) Neurochemical and metabolic changes during cerebral ischemia,Proc. 3rd Natl. Meeting Neuropharmacology, Xian, China.Google Scholar
  26. Yasuda Y., Tiemeyer M., Blackburn C. C., and Schnaar R. L. (1988) Neuronal recognition of gangliosides: Evidence for a brain ganglioside receptor, inNew Trends in Ganglioside Research (Ledeen R. W., Hogan E. L., Tettamanti G., Yates A. J., and Yu R. K., eds.), pp. 229–243, Liviana, Padova, Italy.Google Scholar
  27. Yu R. K., Ledeen R. W., and Eng L. F. (1974) Ganglioside abnormalities in multiple sclerosis.J. Neurochem. 23, 169–174.PubMedCrossRefGoogle Scholar
  28. Yusuf H. K. M., and Dickerson J. W. T. (1978) Disialoganglioside GD1a of rat brain subcellular particles during development.Biochem. J. 174, 655–657.PubMedGoogle Scholar

Copyright information

© Humana Press 1991

Authors and Affiliations

  • Yan Qi
    • 1
  • Qi-ming Xue
    • 1
  1. 1.Neurochemical Laboratory, Department of NeurologyBeijing Friendship HospitalBeijingChina

Personalised recommendations