Molecular and Chemical Neuropathology

, Volume 10, Issue 3, pp 185–200 | Cite as

Compensatory responses to nigrostriatal bundle injury

Studies with 6-hydroxydopamine in an animal model of Parkinsonism
  • Michael J. Zigmond
  • Theodore W. Berger
  • Anthony A. Grace
  • Edward M. Stricker
Original Articles


Intracerebral injections of the neurotoxin 6-hydroxydopamine (6-HDA) can produce selective, near-total destruction of the dopamine (DA)-containing neurons of the nigrostriatal bundle. The dysfunctions in animals with these lesions show many parallels with those present in Parkinsonian patients. Among these are the extensive loss of DA neurons in the basal ganglia, neurological impairments including akinesia, paradoxical kinesia in response to activating conditions, and improved sensory-motor function after the administration of DOPA. Moreover, as with patients with preclinical Parkinsonism, 6-HDA-treated rats with less extensive lesions show few or no behavioral dysfunctions, but are unusually sensitive to the akinesia-inducing effects of stress and dopaminergic antagonists. In this review, we summarize the behavioral effects of 6-HDA-induced depletion of striatal DA in the rat and then focus on the compensatory changes that may underlie the preclinical stage of the disorder. These compensations appear to include an increase in the number of active DA neurons, an increase in the release of DA per impulse from residual terminals, and a decrease in the amount of DA inactivated by high affinity uptake. Collectively, these alterations permit a few residual DA neurons to maintain a normal level of control over cellular activity in the striatum.

Index Entries

DOPA dopamine nigrostriatal bundle 6-hydroxydopamine Parkinsonism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abercrombie E. D., Keller R. W., Jr., and Zigmond M. J. (1988a) Characterization of hippocampal norepinephrine release as measured by microdialysis perfusion: Pharmacological and behavior studies.Neuroscience 27, 897–904.PubMedCrossRefGoogle Scholar
  2. Abercrombie E. D., Keller R. W., Jr., and Zigmond M. J. (1988b) Partial damage to central catecholaminergic systems increases release from residual neurons.113th Annual Meeting of the American Neurological Association, Philadelphia, PA, October 2–5.Google Scholar
  3. Agid Y., Javoy F., and Glowinski, J. (1973a) Hyperactivity of remaining dopaminergic neurons after partial destruction of the nigro-striatal dopaminergic system in the rat.Nature new Biology 245, 150–151.PubMedCrossRefGoogle Scholar
  4. Agid Y., Javoy F., Glowinski J., Bouvet D., and Sotelo C. (1973b) Injection of 6-hydroxydopamine into the substantia nigra of the rat. II. Diffusion and specificity.Brain Res. 58, 291–301.PubMedCrossRefGoogle Scholar
  5. Altar C. A., Marien M. R., and Marshall J. F. (1987) Time course of adaptations in dopamine biosynthesis, metabolism, and release following nigrostriatal lesions: Implications for behavioral recovery from brain injury.J. Neurochem. 48, 390–399.PubMedCrossRefGoogle Scholar
  6. Berger T. W., Nisenbaum E. S., Stricker E. M. and Zigmond M. J. (1987) Evidence for two functionally distinct neurons within the striatum and their differential sensitivity to dopamine,Neurophysiology of Dopaminergic Systems: Current Status and Clinical Perspectives (Chiodo L. A. and Freeman A. S., eds.), pp. 253–284, Lake Shore Publications, Detroit, MI.Google Scholar
  7. Bernheimer H., Birkmayer W., Hornykiewicz O., Jellinger K., and Seitelberger F. (1973) Brain dopamine and the syndromes of Parkinson and Huntington: Clinical, morphological and neurochemical correlations.J. Neurol. Sci. 20, 415–455.PubMedCrossRefGoogle Scholar
  8. Bernheimer H. and Hornykiewicz O. (1965). Herabgesetzte Konzentration der homovanillinsaure im gehirn von parkinsonkranken menschen als ausdruck der storung des zentralen dopaminstoffwechsels.Klin. Wochenschr. 43, 711–715.PubMedCrossRefGoogle Scholar
  9. Birkmayer W. and Riederer P. (1983)Parkinson’s disease, Springer, New York, NY.Google Scholar
  10. Bloom F. E., Algeria S., Groppetti A., Revuelta A., and Costa E. (1969) Lesions of central norepinephrine terminals with 6-hydroxydopamine: biochemistry and fine structure.Science 166, 1284–1286.PubMedCrossRefGoogle Scholar
  11. Breese G. R., Cooper B. R., and Smith R. D. (1973) Biochemical and behavioral alterations following 6-hydroxydopamine administration into brain,Frontier in Catecholamine Research (Usdin E. and Snyder S. H., eds.), pp. 701–706, Pergamon, New York, NY.Google Scholar
  12. Breese G. R., Smith, R. D., Cooper B. R., and Grant L. D. (1973). Alterations in consummatory behavior following intracisternal injection of 6-hydroxydopamine.Pharmacol. Biochem. Behav. 1, 319–328.PubMedCrossRefGoogle Scholar
  13. Breese G. R. and Traylor T. D. (1970) Effects of 6-hydroxydopamine on brain norepinephrine and dopamine: Evidence of selective degeneration of catecholamine neurons.J. Pharmacol. Exp. Ther. 174, 413–420.PubMedGoogle Scholar
  14. Breese G. R. and Traylor T. D. (1971) Depletion of brain noradrenaline and dopamine by 6-hydroxydopamine.Br. J. Pharmac. 42, 88–99.Google Scholar
  15. Bunney B. S. and Grace A. A. (1978) Acute and chronic haloperidol treatment: Comparison of effects on nigral dopaminergic cell activity.Life Sci. 23, 1715–1728.PubMedCrossRefGoogle Scholar
  16. Butcher L. L., Eastgate S. M., and Hodge G. K. (1974) Evidence that punctate intracerebral administration of 6-hydroxydopamine fails to produce selective neuronal degeneration.Naunyn-Schmiedeberg’s Arch. Pharmacol. 285, 31–70.CrossRefGoogle Scholar
  17. Chiodo L. A. and Berger T. W. (1986) Dopamine enhances amino acid-induced excitation and inhibition in the striatum.Brain Res. 375, 198–203.PubMedCrossRefGoogle Scholar
  18. Cooper B. R., Breese G. R., Howard J. L., and Grant L. D. (1972) Effect of central catecholamine alterations by 6-hydroxydopamine on shuttle box avoidance acquisition.Physiol. Behav. 9, 727–731.PubMedCrossRefGoogle Scholar
  19. Doucet G., Descarries L., and Garcia S. (1986) Quantification of the dopamine innervation in adult rat neostriatum.Neuroscience 19, 427–445.PubMedCrossRefGoogle Scholar
  20. Fibiger H. C., Pudritz R. E., McGeer P. L., and McGeer E. G. (1972) Axonal transport in nigro-striatal and nigro-thalamic neurons: Effects of medial forebrain bundle lesions and 6-hydroxydopamine.J. Neurochem. 19, 1697–1708.PubMedCrossRefGoogle Scholar
  21. Fibiger H., Zis A., and McGeer E. (1973) Feeding and drinking deficits after 6-hydroxydopamine administration in the rat: Similarities to the lateral hypothalamic syndrome.Brain Res. 55, 135–148.PubMedCrossRefGoogle Scholar
  22. Grace A. A. (1987) The regulation of dopamine neuron activity as determined by in vivo and in vitro intracellular recordings.Neurophysiology of Dopaminergic Systems: Current Status and Clinical Perspectives (Chiodo L. A. and Freeman A. S., eds.), pp. 1–67. Lake Shore Publications, Detroit, MI.Google Scholar
  23. Grace A. A. and Bunney B. S. (1986) Induction of depolarization block in nigral dopamine neurons by repeated administration of haloperidol: Analysis using in vivo intracellular recording.J. Pharmacol. Exp. Ther. 238, 1092–1100.PubMedGoogle Scholar
  24. Heffner T. G., Zigmond M. J., and Stricker E. M. (1977) Effects of dopaminergic agonists and antagonists on feeding in intact and 6-hydroxydopaminetreated rats.J. Pharmacol. Exp. Ther. 201, 386–399.PubMedGoogle Scholar
  25. Hefti F., Melamed E., and Wurtman R. J. (1980) Partial lesions of the dopaminergic nigrostriatal system in rat brain: Biochemical characterization.Brain Res. 195, 123–137.PubMedCrossRefGoogle Scholar
  26. Heikkila R. E. and Cohen G. (1972) Further studies on the generation of hydrogen peroxide by 6-hydroxydopamine: Potentiation by ascorbic acid.Mol. Pharmacol. 8, 241–248.PubMedGoogle Scholar
  27. Hokfelt T. and Ungerstedt U. (1973) Specificity of 6-hydroxydopamine induced degeneration of central monoamine neurons: An electron and fluorescence microscopic study with special reference to intracerebral injection in the nigro-striatal dopamine system.Brain. Res. 60, 269–297.PubMedCrossRefGoogle Scholar
  28. Hollerman J. R., Berger T. W., and Grace A. A. (1986) Compensatory changes in the activity of nigral dopamine cells in response to partial dopamine-depleting lesions.Soc. Neurosci. Abstr. 12, 872.Google Scholar
  29. Hollerman J. R. and Grace A. A. (1987) Enhanced susceptibility of dopamine neurons to depolarization block after partial dopamine lesions.Soc. Neurosci. Abstr. 13, 1363.Google Scholar
  30. Hollerman J. R. and Grace A. A. (1988) Nigral DA cell recruitment as a compensatory mechanism.Soc. Neurosci. Abstr. 14, 1146.Google Scholar
  31. Hollerman J. R. and Grace A. A. (1989) Acute haloperidol administration induces depolarization block of nigral dopamine neurons in rats after partial dopamine lesions.Neurosci. Lett. 96, 82–88.PubMedCrossRefGoogle Scholar
  32. Jacks B. R., De Champlain J., and Cordeau J. P. (1972) Effects of 6-hydroxydopamine on putative transmitter substances in the central nervous system.Eur. J. Pharmacol. 18, 353–360.PubMedCrossRefGoogle Scholar
  33. Jankovic J. and Calne D. B. (1987) Parkinson’s disease: Etiology and treatment,Current Neurology (Appel S. H., ed.), pp. 193–234, Year Book Medical Publisher, Chicago, IL.Google Scholar
  34. Keefe, K. A., Salamone J. D., Zigmond M. J., and Stricker E. M. (1989) Paradoxical kinesia in Parkinsonism is not caused by dopamine release: Studies in an animal modelArch. Neurol. in press.Google Scholar
  35. Kelly R. S. and Wightman R. M. (1987) Detection of dopamine overflow and diffusion with voltammetry in slices of rat brain.Brain Res. 423, 79–87.PubMedCrossRefGoogle Scholar
  36. Kostrzewa R. M. and Jacobowitz D. M. (1974) Pharmacological action of 6-hydroxydopamine.Pharmacol. Rev. 26, 199–288.PubMedGoogle Scholar
  37. Ljungberg T. and Ungerstedt U. (1976) Reinstatement of eating by dopamine agonists in aphagic dopamine denervated rats.Physiol. Behav. 16, 277–283.PubMedCrossRefGoogle Scholar
  38. Marshall J. F. (1979) Somatosensory inattention after dopamine-depleting intracerebral 6-OHDA injections: Spontaneous recovery and pharmacological control.Brain Res. 177, 311–324.PubMedCrossRefGoogle Scholar
  39. Marshall J. F., Levitan D., and Stricker E. M. (1976) Activation-induced restoration of sensorimotor functions in rats with dopamine-depleting brain lesions.J. Comp. Physiol. Psychol. 90, 536–546.PubMedCrossRefGoogle Scholar
  40. Marshall J. F. and Teitelbaum P. (1973) A comparison of the eating in response to hypothermic and glucoprivic challenges after nigral 6-hydroxydopamine and lateral hypothalamic electrolytic lesions in rats.Brain Res. 55, 229–233.PubMedCrossRefGoogle Scholar
  41. Marshall J. F. and Ungerstedt U. (1976) Apomorphine-induced restoration of drinking to thirst challenges in 6-hydroxydopamine-treated rats.Physiol. Behav. 17, 817–822.PubMedCrossRefGoogle Scholar
  42. Nisenbaum E. S., Orr W. B. and Berger T. W. (1988) Evidence for two functionally distinct subclasses of neurons within the rat striatum.J. Neurosci. 8, 4138–4150.PubMedGoogle Scholar
  43. Nisenbaum E. S., Stricker E. M., Zigmond M. J., and Berger T. W. (1986). Longterm effects of dopamine-depleting brain lesions on spontaneous activity of Type II striatal neurons: relation to behavioral recovery.Brain Res. 398, 221–230.PubMedCrossRefGoogle Scholar
  44. Onn S. P., Berger T. W., Stricker E. M., and Zigmond M. J. (1986) Effects of intraventricular 6-hydroxydopamine on the dopaminergic innervation of striatum: Histochemical and neurochemical analysis.Brain Res. 376, 8–19.PubMedCrossRefGoogle Scholar
  45. Orr W. B., Gardiner T. W., Stricker E. M., Zigmond M. J., and Berger T. W. (1986) Short-term effects of dopamine-depleting brain lesions on spontaneous activity of striatal neurons: relation to local dopamine concentration and behavior.Brain Res. 376, 20–28.PubMedCrossRefGoogle Scholar
  46. Poirier L. J. (1975) Histopathological changes associated with the intracerebral injection of 6-hydroxydopamine (6-HDA) and peroxide (H202) in the cat and the rat.J. Neural Trans. 37, 209–218.CrossRefGoogle Scholar
  47. Reader T. A. and Gauthier P. (1984) Catecholamines and serotonin in the rat central nervous system after 6-OHDA, 5-7-DHT and p-CPA.J. Neural Trans. 59, 207–227.CrossRefGoogle Scholar
  48. Sachs C. H. and Jonsson G. (1975) Mechanisms of action of 6-hydroxydopamine.Pharmacol. 24, 1–8.Google Scholar
  49. Schoenfeld R. I. and Zigmond M. J. (1973) Behavioural pharmacology of 6-hydroxydopamine,Frontiers in catecholamine research (Usdin E. and Snyder S., eds.), pp. 695–700, Pergamon, New York, NY.Google Scholar
  50. Schultz W. and Ungerstedt U. (1978) A method to detect and record from striatal cells of low spontaneous activity by stimulating the corticostriatal pathway.Brain Res. 142, 357–362.PubMedCrossRefGoogle Scholar
  51. Snyder A. M., Stricker E. M., and Zigmond M. J. (1985) Stress-induced neurological impairments in an animal model of parkinsonism.Ann. Neurol. 18, 544–551.PubMedCrossRefGoogle Scholar
  52. Snyder G. L., Stachowiak M., Keller R. W., Jr., Stricker E. M., and Zigmond M. J. (1986) Release of endogenous DA and DOPAC from striatal slices after DA-depleting lesions: Effects of stimulation frequency and DA synthesis inhibition.Soc. Neurosci. Abstr. 12, 136.Google Scholar
  53. Stachowiak M. K., Keller R. W., Jr., Stricker E. M., and Zigmond M. J. (1987) Increased dopamine efflux from striatal slices during development and after nigrostriatal bundle damage.J. Neurosci. 7, 1648–1654.PubMedGoogle Scholar
  54. Stricker E. M. and Zigmond M. J. (1974) Effects of homeostasis of intraventricular injection of 6-hydroxydopamine in rats.J. Comp. Physiol. Psychol. 86, 973–994.PubMedCrossRefGoogle Scholar
  55. Stricker E. M. and Zigmond M. J. (1976) Recovery of function following damage to central catecholamine-containing neurons: a neurochemical model of the lateral hypothalamic syndrome.Progress in Psychobiology and Physiological Psychology, vol. 6 (Sprague J. M. and Epstein A. N., eds.), pp. 121–189, Academic, New York, NY.Google Scholar
  56. Thoenen H. and Tranzer J. P. (1968) Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine.Naunyn-Schmied. Arch. Pharmacol. Exp. Pathol. 261, 271–288.CrossRefGoogle Scholar
  57. Ungerstedt U. (1968) 6-hyroxydopamine-induced degeneration of central monoamine neurons.Eur. J. Pharmacol. 5, 107–110.PubMedCrossRefGoogle Scholar
  58. Ungerstedt U. (1971) Adipsia and aphagia after 6-hyroxydopamine-induced degeneration of the nigro-striatal dopamine system.Acta Physiol. Scand. Suppl. 367, 95–122.PubMedGoogle Scholar
  59. Uretsky N. J. and Iversen L. L. (1970) Effects of 6-hydroxydopamine on catecholamine-containing neurons in rat brain.J. Neurochem. 17, 269–278.PubMedCrossRefGoogle Scholar
  60. Uretsky N. J., Simmonds M. A., and Iversen L. L. (1971) Changes in the retention and metabolism of3H-I-norepinephrine in rat brain in vivo after 6-hydroxydopamine pretreatment.J. Pharmacol. Exp. Ther. 176, 489–496.PubMedGoogle Scholar
  61. Zigmond M. J., Acheson A. L., Stachowiak M. K., and Stricker E. M. (1984) Neurochemical compensation after nigrostriatal bundle injury in an animal model of preclinical parkinsonism.Arch. Neurol. 41, 856–861.PubMedGoogle Scholar
  62. Zigmond M. J. and Stricker E. M. (1973) Recovery of feeding and drinking by rats after intraventricular 6-hydroxydopamine or lateral hypothalamic lesions.Science 182, 717–720.PubMedCrossRefGoogle Scholar
  63. Zigmond M. J. and Stricker E. M. (1974) Ingestive behavior following damage to central dopamine neurons: Implications for homeostasis and recovery of function,Neuropsychopharmacology of Monoamines and Their Regulatory Enzymes (Usdin E., ed.), pp. 385–402, Raven, New York, NY.Google Scholar
  64. Zigmond M. J. and Stricker E. M. (1989) Animal models of Parkinsonism using selective neurotoxins: Clinical and basic implications,International Review of Neurobiology (Bradley R. J., ed.), Academic, New York, NY, in press.Google Scholar
  65. Zigmond M. J., Stricker E. M., and Berger T. W. (1987) Parkinsonism: Insights from animal models utilizing neurotoxic agents,Experimental Models of Dementing Disorders: A synaptic Neurochemical Perspective (Coyle J. T., ed.), pp. 1–38, Liss, New York, NY.Google Scholar

Copyright information

© Humana Press Inc. 1989

Authors and Affiliations

  • Michael J. Zigmond
    • 1
    • 2
  • Theodore W. Berger
    • 1
    • 2
  • Anthony A. Grace
    • 1
    • 2
  • Edward M. Stricker
    • 1
    • 2
  1. 1.Departments of Behavioral Neuroscience and PsychiatryUniversity of PittsburghPittsburgh
  2. 2.Center for NeuroscienceUniversity of PittsburghPittsburgh

Personalised recommendations