Acta Physica Hungarica

, Volume 54, Issue 1–2, pp 155–159 | Cite as

Solutions of the Su(1, 1) spin coefficient equations with non-geodesic eigenrays

  • B. Lukács
Elementary Particles and Fields


The integration of the spin coefficient equations of spatially symmetric vacuum is carried out for non-geodesic eigencongruences and vanishing shear parameter. Two different solutions, a special Einstein-Rosen metric and a solution belonging to the spatially symmetric analogons of the Papapetrou-type metrics are obtained. The corresponding electrovac class of common eigenrays contains only Ernst counterparts of the vacuum metrics.


Killing Vector Vacuum Equation Symmetric Vacuum Spin Coefficient Vacuum Metrics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. T. Newman and L. Tamburino, J. Math. Phys.,3, 902, 1962.CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    E. T. Newman, L. Tamburino and T. W. Unti, J. Math. Phys.,4, 915, 1963.MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    T. W. Unti and R. J. Torrence, J. Math. Phys.,7, 535, 1966.CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Z. Perjés, J. Math. Phys.,11, 3383, 1970.CrossRefADSGoogle Scholar
  5. 5.
    B. Lukács, Acta Phys. Hung.,41, 137, 1976.CrossRefADSGoogle Scholar
  6. 6.
    J. Kóta and Z. Perjés, J. Math. Phys.,13, 1695, 1972.CrossRefADSGoogle Scholar
  7. 7.
    J. Kóta, B. Lukács and Z. Perjés, Proc. 8th Marcel Grossmann Meeting, North-Holland, 1982, p. 203.Google Scholar
  8. 8.
    B. Lukács, KFKI Report, 73–38.Google Scholar
  9. 9.
    B. Lukács, KFKI Report, 73–26.Google Scholar
  10. 10.
    F. J. Ernst, J. Math. Phys.,15, 1409, 1974.CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    F. J. Ernst, Phys. Rev.,168, 1415, 1968.CrossRefADSGoogle Scholar
  12. 12.
    B. Lukács and N. Perjés, Gen. Rel. Grav.,4, 161, 1973.CrossRefADSGoogle Scholar
  13. 13.
    A. Einstein and N. Rosen, J. Franklin Inst.,223, 43, 1937.CrossRefGoogle Scholar
  14. 14.
    A. Papapetrou, Ann. Phys.,12, 309, 1953.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Z. Perjés, Int. J. Theor. Phys.,10, 217, 1974.CrossRefGoogle Scholar

Copyright information

© with the authors 1983

Authors and Affiliations

  • B. Lukács
    • 1
  1. 1.Central Research Institute for PhysicsBudapestHungary

Personalised recommendations