Acta Physica Hungarica

, Volume 54, Issue 1–2, pp 125–137 | Cite as

Magnetoresistance and electron scattering mechanisms in gallium arsenide

  • B. Pődör
Condensed Matter


Results of magnetoresistance measurements performed at 300K and 77K on GaAs single crystals having electron concentrations in the range of 1016 to 1018 cm−3 were analysed using the concept of effective relaxation time τeff∼ε r eff wherer eff is the effective scattering exponent. The values ofr eff deduced from the experiments are in accordance with dominant polar optical phonon and space-charge scattering at room temperature as well as with dominant ionized impurity scattering with an admixture of space-charge scattering at liquid nitrogen temperature. Results for the Hall factor at these two temperatures are also presented; at 300Kr H ≈1, but at 77K it changes appreciably with the carrier concentration.


GaAs Electron Concentration Gallium Arsenide Scattering Mechanism Polar Optical Phonon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. H. Putley, The Hall Effect and Related Phenomena, London, Butterworths, 1960.Google Scholar
  2. 2.
    H. Ehrenreich, Phys. Rev.,120, 1951, 1960.CrossRefADSGoogle Scholar
  3. 3.
    C. Hilsum, In: Progress in Semiconductors, Ed. A. F. Gibson, London, Heywood Co. Ltd.,9, 137, 1965.Google Scholar
  4. 4.
    H. Piller, Proc. Int. Conf. Semicond. Phys., Kyoto, 1966, p. 206.Google Scholar
  5. 5.
    D. L. Rode, Phys. Rev.,B 2, 1012, 1970.CrossRefADSGoogle Scholar
  6. 6.
    K. Fletcher and P. N. Butcher, J. Phys. C: Solid State Phys.,5, 212, 1972.CrossRefADSGoogle Scholar
  7. 7.
    B. Pődör and N. Nádor, Acta Phys. Hung.,37, 317, 1974.CrossRefGoogle Scholar
  8. 8.
    D. L. Rode, In: Semiconductors and Semimetals, Ed. R. K. Willardson, A. C. Beer, Acad. Press, New York, Vol. 10, p. 1, 1975.Google Scholar
  9. 9.
    B. R. Nag, Electron Transport in Compound Semiconductors, Springer Verlag, Berlin, 1980.Google Scholar
  10. 10.
    R. L. Weisberg, J. Appl. Phys.,33, 1817, 1962.CrossRefADSGoogle Scholar
  11. 11.
    T. Katoda and T. Sugano, J. Electrochem. Soc.,121, 1066, 1974.CrossRefGoogle Scholar
  12. 12.
    B. Pődör, N. Nádor and I. Bertóti, phys. stat. sol. (a),29, 173, 1975.CrossRefGoogle Scholar
  13. 13.
    Y. Kushiro, T. Seimiya, O. Sinbori and T. Kobayashi, J. Appl. Phys.,48, 1636, 1977.CrossRefADSGoogle Scholar
  14. 14.
    G. B. Stringfellow, J. Appl. Phys.,50, 4178, 1979.CrossRefADSGoogle Scholar
  15. 15.
    E. M. Conwell and M. O. Vassel, Phys. Rev.,166, 797, 1968.CrossRefADSGoogle Scholar
  16. 16.
    G. B. Stringfellow and H. Künzel, J. Appl. Phys.,51, 3254, 1980.CrossRefADSGoogle Scholar
  17. 17.
    D. Chattopadhyay, Phys. Rev.,B 23, 2956, 1981.ADSGoogle Scholar
  18. 18.
    R. A. Faulkner, Phys. Rev.,175, 991, 1968.CrossRefADSGoogle Scholar
  19. 19.
    P. J. Dean, J. of Luminescence,1–2, 398, 1970.ADSGoogle Scholar
  20. 20.
    А. И. Ансельм, Б. М. Аскеров, Физика твердого тела,3, 3668, 1961.Google Scholar
  21. 21.
    В. И. Фистуль, Сильно легированные полупроводники, Изд. Наука, Москва, 1967.Google Scholar
  22. 22.
    S S. Devlin, In: Physics of II–VI Compounds, Ed. M. Aven, J. S. Prener, Amsterdam, North-Holland, 1967, p. 549.Google Scholar
  23. 23.
    H. Ehrenreich, J. Appl. Phys. (Suppl.),32, 2155, 1961.CrossRefADSGoogle Scholar
  24. 24.
    R. Kuzel, Can. J. Phys.,47, 2261, 1969.ADSGoogle Scholar
  25. 25.
    Т. И. Воронина, О. В. Емельяненко, В. Н. Наследов, Д. Д. Недеогло, Физ. и тех. полупроводников,7, 1382, 1973.Google Scholar
  26. 26.
    A. F. Kravchenko, S. Kubálková, B. V. Morozov, V. G. Polovinkin, and E. M. Skok, Phys. Stat. Sol. (b)72, 221, 1975.CrossRefADSGoogle Scholar
  27. 27.
    О. В. Емельяненко, З. Ш. Овсюк, В. Г. Сидоров, В. А. Скрипкин, Всесоюзная конференция по физическим свойствам полупроводников A3B5 и A2B6 1965, Баку, Изд. АН Азерб. ССР, 1967, стр. 193.Google Scholar
  28. 28.
    R. G. Hamerly and M. W. Heller, J. Appl. Phys.,42, 5585, 1971.CrossRefADSGoogle Scholar
  29. 29.
    B. Pődör, Acta Phys. Hung.,27, 449, 1969.CrossRefGoogle Scholar
  30. 30.
    D. L. Rode and S. Knight, Phys. Rev.,B 3, 2534, 1971.ADSCrossRefGoogle Scholar
  31. 31.
    H. Ikoma, J. Phys. Soc. Japan,25, 1069, 1968.CrossRefADSGoogle Scholar
  32. 32.
    В. В. Батавип, В. М. Михаэлян, Г. В. Попова, В. Н. Федоренко, Физ. и тех. полупроводников,6, 84, 1972.Google Scholar
  33. 33.
    B. Pődör and C. Ivánka, Acta Phys. Hung.,25, 115, 1968.CrossRefGoogle Scholar
  34. 34.
    П. И. Баранский, Г. В. Долганникова, Э. П. Сеитов, Укр. Физ. Журн.17, 137, 1972.Google Scholar

Copyright information

© with the authors 1983

Authors and Affiliations

  • B. Pődör
    • 1
  1. 1.Research Laboratory for Inorganic Chemistry of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations