Acta Physica Hungarica

, Volume 64, Issue 1–3, pp 147–155 | Cite as

The Higgs meson mass and the scale of new physics in the standard model

  • P. Hasenfratz
  • J. Nager
Elementary Particles and Fields


There are indications for the Weinberg-Salam model being an effective theory only. This would imply a relation between the scale (Λcut) before which new physics should be observed and the Higgs meson massm H. The relation Λcutcut(m H ) is studied in an approximate, but nonperturbative way. Form H m w≳10, Λcut is of the order of the Higgs meson mass itself (i.e. this is an upper bound), while form H m W≲6, Λcut can be very large and no practically interesting constraint emerges.


Renormalization Group Higgs Mass Radiative Correction Effective Theory Gaussian Point 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.J.E. Callaway, Nucl. Phys.,B223, 189, 1984; M.A. Beg, C. Panagiotakopoulos and A. Sirlin, Phys. Rev. Lett.,52, 883, 1984.CrossRefADSGoogle Scholar
  2. 2.
    R. Dashen and H. Neuberger, Phys. Rev. Lett.,50, 1897, 1983.CrossRefADSGoogle Scholar
  3. 3.
    J. Jersak, Aachen prepr. PITHA 85/25, 1985; J. Jersak, C.B. Lang, T. Neuhaus and G. Vones, Phys. Rev.,D32, 2761, 1985; V.P. Gerdt, A.S. Ilchev, V.K. Mitrjushkin, I.K. Sobolev and A.M. Zadorozhny, Nucl. Phys.,B26 [FS 15], 145, 1986; V.P. Gert, A.S. Ilchev, V.K. Mitrjushkin and A.M. Zadorozny, Z. Phys.,C29, 363, 1985; H.G. Evertz, J. Jersak, D.P. Landau and T. Neuhaus, PITHA 85/23, 1985; K. Decker, I. Montvay and P. Weisz, Nucl. Phys.,B268, 362, 1986; J. Jersak, in Advances in Lattice Gauge Theory, p. 241, Eds. D.W. Duke, J.F. Owens, World Sci., 1985; D.J.E. Callaway and R. Petronzio, Nucl. Phys.,B267 [FS 12], 253, 1986; I. Montvay, DESY, 85-0 05, 1985; W. Langguth and I. Montvay, Phys. Lett.,165B, 135, 1985; I. Montvay, in Advances in Lattice Gauge Theory, p. 266, Eds. D.W. Duke, J.F. Owens, Wordl Sci., 1985; I. Montvay, W. Langguth and P. Weisz, DESY 85–138, 1985.Google Scholar
  4. 4.
    For a discussion on this question, see e.g. P. Hasenfratz, talk given at the Berkeley Conference (1986), Bern preprint BUTP-86/21.Google Scholar
  5. 5.
    A. Hasenfratz and P. Hasenfratz, Phys. Rev.,D34, 3160, 1986.ADSGoogle Scholar
  6. 6.
    A. Hasefratz and P. Hasenfratz, Nucl. Phys.,B270 [FS 16], 685, 1986.ADSGoogle Scholar
  7. 7.
    P. Hasenfratz and J. Nager, Z. Phys.,C 87, 477, 1988.Google Scholar
  8. 8.
    The details of this procedure forN=1 are discussed in ref. [6].ADSGoogle Scholar
  9. 9.
    K.G. Wilson, Phys. Rev.,D6, 419, 1971; K.G. Wilson and J. Kogut, Phys Rep.,12C, 76, 1974; M. Aizenman, Phys. Rev. Lett.,47, 1, 1981; Commun. Math. Phys.,86, 1, 1982; G.A. Baker and J.M. Kincaid, J. Stat. Phys.,24, 469, 1981; D.C. Brydges, J. Fröhlich and T. Spencer, Commun. Math. Phys.,83, 123, 1982; J. Fröhlich, Nucl. Phys.,B200, 281, 1982; A.D. Sokal, Ann. Inst. H. Poincaré,A37, 317, 1982; M. Aizenman and R. Graham, Nucl. Phys.,B225 [FS 9], 261, 1983; C. Aragao de Carvalho, S. Caracciolo and J. Fröhlich, Nucl. Phys.,B215, 209, 1983; K. Gawedzki and A. Kupiainen, Phys. Rev. Lett.,54B, 92, 1985; B. Freedmann, P. Smolensky and D. Weingarten, Phys. Lett.,113B, 481, 1982; D.J.E. Callaway and R. Petronzio, Nucl. Phys.,B240 [FS 12], 577, 1984; C.B. Lang, Phys. Lett.,155B, 399, 1985; Nucl. Phys.,B265 [FS 15], 630, 1986.Google Scholar
  10. 10.
    F.J. Wegner and A. Houghton, Phys. Rev.,A8, 401, 1972.Google Scholar
  11. 11.
    See, e.g. the first two references in [9] ;Google Scholar

Copyright information

© Akadémiai Kiadó 1988

Authors and Affiliations

  • P. Hasenfratz
    • 1
  • J. Nager
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of BernBernSwitzerland

Personalised recommendations