Advertisement

Identical superdeformed bands

  • Bernard Haas
Article
  • 27 Downloads

Abstract

The phenomenon of identical bands is studied by analyzing the distributions of fractional changes in the dynamical moments of inertia of pairs of bands in superdeformed (SD) nuclei. These distributions are found to exhibit a peak with a centroid at nearly zero. Their widths increase in going from the SD bands in the massA∼150, to the SD bands in the mass ∼190 and to the normally-deformed bands in the rare-earth region. These differences may be attributed to the weaker pairing correlations and the stabilizing role of intruder orbitals on the structures of SD bands. Precise level lifetimes have been measured for various pairs of identical SD bands in Gd and Dy isotopes. By comparing the derived quadrupole moments with calculations performed in the framework of the cranking Skyrme-Hartree-Fock model, it is shown that, independently of the intrinsic configuration and of the proton and neutron numbers, the charge moments calculated with respect to the doubly-magic SD core of152Dy can be expressed in terms of independent contributions from the individual hole and particle orbitals.

Keywords

Quadrupole Moment Fractional Change Identical Band Yrast Band Dynamical Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Baktash, B. Haas and W. Nazarewicz,Ann. Rev. Nucl. Part. Sci. 45 (1995) 485.CrossRefADSGoogle Scholar
  2. 2.
    T. Byrski et al.,Phys. Rev. Lett. 64 (1990) 1650.CrossRefADSGoogle Scholar
  3. 3.
    W. Nazarewicz et al.,Phys. Rev. Lett. 64 (1990) 1654.CrossRefADSGoogle Scholar
  4. 4.
    F.S. Stephens,Nucl. Phys. A520 (1990) 91c.CrossRefADSGoogle Scholar
  5. 5.
    F.S. Stephens et al.,Phys. Rev. Lett. 66 (1991) 1378.CrossRefADSGoogle Scholar
  6. 6.
    I. Ahmad et al.,Phys. Rev. C45 (1991) 1204.Google Scholar
  7. 7.
    R.F. Casten et al.,Phys. Rev. C45 (1992) R1413.CrossRefADSGoogle Scholar
  8. 8.
    C. Baktash et al.,Phys. Rev. Lett. 69 (1992) 1500.CrossRefADSGoogle Scholar
  9. 9.
    G. de France et al.,Phys. Rev. C53 (1996) 1070.CrossRefGoogle Scholar
  10. 10.
    C. Baktash et al.,Nucl. Phys. A557 (1993) 145c.CrossRefADSGoogle Scholar
  11. 11.
    References to experimental bands used in this study can be found in the review [1] C. Baktash, B. Haas and W. Nazarewicz,Ann. Rev. Nucl. Part. Sci. 45 (1995) 485.Google Scholar
  12. 12.
    W. Nazarewicz, R. Wyss and A. Johnson,Nucl. Phys. A503 (1989) 285.CrossRefGoogle Scholar
  13. 13.
    Y.R. Shimizu, E. Vigezzi and R.A. Broglia,Nucl. Phys. A509 (1990) 80.CrossRefGoogle Scholar
  14. 14.
    T. Bengtsson, S. Åberg and I. Ragnarsson,Phys. Lett. 208B (1988) 39.ADSGoogle Scholar
  15. 15.
    I. Ragnarsson,Nucl. Phys. A557 (1993) 167.CrossRefGoogle Scholar
  16. 16.
    See Ref. [17] P. Fallon et al., inProc. Conf. on Physics from Large γ-Ray Arrays, Lawrence Berkeley Laboratory Report LBL-35687, Berkeley, 1994, Vol. II, pp. 89–93.Google Scholar
  17. 17.
    P. Fallon et al., inProc. Conf. on Physics from Large γ-Ray Arrays, Lawrence Berkeley Laboratory Report LBL-35687, Berkeley, 1994, Vol. II, pp. 89–93.Google Scholar
  18. 18.
    see Refs [19–21]. W. Satula et al.,Nucl. Phys. A529 (1991) 289. B. Gall et al.,Z. Phys. A348 (1994) 183.Google Scholar
  19. 19.
    M.A. Riley et al.,Nucl. Phys. A512 (1990) 178.Google Scholar
  20. 20.
    W. Satula et al.,Nucl. Phys. A529 (1991) 289.CrossRefGoogle Scholar
  21. 21.
    B. Gall et al.,Z. Phys. A348 (1994) 183.CrossRefADSGoogle Scholar
  22. 22.
    D. Ye et al.,Phys. Rev. C41 (1990) R13.CrossRefADSGoogle Scholar
  23. 23.
    M.A. Bentley et al.,Phys. Rev. Lett. 59 (1987) 2141.CrossRefADSGoogle Scholar
  24. 24.
    B. Cederwall et al.,Nucl. Instr. Meth. A354 (1995) 591.CrossRefADSGoogle Scholar
  25. 25.
    B. Haas et al.,Phys. Rev. Lett. 60 (1988) 503.CrossRefADSGoogle Scholar
  26. 26.
    P. Fallon et al.,Phys. Lett. B257 (1991) 269.Google Scholar
  27. 27.
    H. Savajols et al.,Phys. Rev. Lett. 76 (1996) 4480.CrossRefADSGoogle Scholar
  28. 28.
    C. Rigollet et al., PhD thesis (1996) and to be published.Google Scholar
  29. 29.
    S. Flibotte et al.,Nucl. Phys. A584 (1995) 373.CrossRefGoogle Scholar
  30. 30.
    G. de Angelis et al., inProc. Conf. Phys. Large γ-Ray Arrays, Lawrence Berkeley Lab. Rep. LBL-35687, 1994.Google Scholar
  31. 31.
    G. de France, inInternational Spring Seminar on Nuclear Physics, New Perspectives in Nuclear Structure, Ravello, Italy, 1995.Google Scholar
  32. 32.
    F.A. Beck, inProc. Conf. Phys. Large γ-Ray Arrays, Lawrence Berkeley Lab. Rep. LBL-35687, 1994.Google Scholar
  33. 33.
    L.C. Northcliffe and R.F. Schilling,Nucl. Data Tables 7 (1970) 256.CrossRefGoogle Scholar
  34. 34.
    S.H. Sie et al.,Nucl. Phys. A291 (1977) 443.CrossRefGoogle Scholar
  35. 35.
    J. Lindhard, M. Scharff and H.E. Schiott,Mat. Fys. Medd. Dan. Vid. Selk. 33, No. 14 (1963).Google Scholar
  36. 36.
    K.B. Winterbon,Atomic Energy of Canada Limited Report, AECL-3194 (1968).Google Scholar
  37. 37.
    A.E. Blaugrund,Nucl. Phys. 88 (1966) 501.CrossRefGoogle Scholar
  38. 38.
    J.C. Bacelar et al.,Phys. Rev. C35 (1987) 1170.CrossRefADSGoogle Scholar
  39. 39.
    J. Gascon et al.,Nucl. Phys. A513 (1990) 344.CrossRefGoogle Scholar
  40. 40.
    J.F. Ziegler, J.P. Biersack and U. Littmark,The Stopping and Range of Ions in Solids, Pergamon, New York, 1985.Google Scholar
  41. 41.
    B. Haas et al.,Nucl. Phys. A561 (1993) 251.CrossRefGoogle Scholar
  42. 42.
    W. Satula, J. Dobaczewski, J. Dudek and W. Nazarewicz,Phys. Rev. Lett. 77 (1996) 5168.CrossRefADSGoogle Scholar

Copyright information

© Akadémiai Kiadó 1997

Authors and Affiliations

  • Bernard Haas
    • 1
  1. 1.Institut de Recherches SubatomiquesIN2P3-CNRS/Université Louis PasteurStrasbourg CedexFrance

Personalised recommendations