Advertisement

Acta Physica Academiae Scientiarum Hungaricae

, Volume 42, Issue 2, pp 151–157 | Cite as

Average hydrodynamic behaviour of a non-linear pion-pion chiral Lagrangian

  • M. Lakshmanan
Article
  • 7 Downloads

Abstract

In the study of the behaviour of matter at superhigh densities (1016 g/cm3), the properties ofe +e andp−p collisions are known to provide conditions which determine the equation of state. In this paper, assuming that a system of pions is a good representation ofp−p collisions, we study the hydrodynamic behaviour of an SU(2)×SU(2) chiral Lagrangian in theGasiorowicz-Geffen coordinates with symmetry-breaking terms included. This model possesses simple classical solutions. By the application of the averaging method ofMilekhin, we obtain the equation of state and discuss its implications.

Keywords

Hydrodynamic Behaviour Proper Pressure Symmetry Breaking Term Canonically Conjugate Momentum Large Quantum Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Canuto andJ. Lodenquai, Phys. Rev.,11D, 233, 1975.ADSGoogle Scholar
  2. 2.
    L. Landau, Izv. Akad. Nauk SSSR. Ser. Fiz.,17, 51, 1953;M. Chaichian andE. Suhonen, Corrections to the Landau Hydrodynamic Model of Multiparticle Production due to Viscosity, University of Helsinki Preprint, 1976.Google Scholar
  3. 3.
    W. Heisenberg, Zeit. Phys.,126, 569, 1949.MATHCrossRefADSGoogle Scholar
  4. 4.
    G. A. Milekhin, Izv. Akad. Nauk. SSSR. Ser. Fiz.,26, 625, 1962.Google Scholar
  5. 5.
    A. Andreev, Sov. J. Nucl. Phys.,17, 96, 1973.Google Scholar
  6. 6.
    M. Lakshmanan andK. Eswaran, J. Phys.A8, 1658, 1975.ADSGoogle Scholar
  7. 7.
    P. M. Mathews andM. Lakshmanan, Quart. Appl. Maths.,32, 215, 1974.MATHMathSciNetGoogle Scholar
  8. 8.
    P. M. Mathews andM. Lakshmanan, Nuov. Cim.,26A, 299, 1975.CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    G. Peressutti, Nuc.l Phys.,92B, 58, 1975.CrossRefADSGoogle Scholar
  10. 10.
    L. Landau andE. M. Lifshitz, Mechanics, Pergamon Press, Addison-Wesley, Reading, Mass. 1960.MATHGoogle Scholar
  11. 11.
    G. B. Whitham, Linear and Non-Linear Waves, John Wiley & Sons, New York, 1974.Google Scholar
  12. 12.
    M. Lakshmanan, J. Phys.A7, 889, 1974.ADSMathSciNetGoogle Scholar
  13. 13.
    S. Gasiorowicz andD. Geffen, Rev. Mod. Phys.,43, 531, 1969;R.-Delbourgo, Abdus Salam andJ. Strathdee, Phys. Rev.,187, 1999, 1969.CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    See, e.g.,E. L. Feinberg, Sov. Phys.-Uspekhi,14, 455, 1972.CrossRefADSGoogle Scholar

Copyright information

© with the authors 1977

Authors and Affiliations

  • M. Lakshmanan
    • 1
  1. 1.Institut für Theoretische Physik der Universität TübingenTübingenW. Germany

Personalised recommendations