Acta Physica Hungarica

, 56:217 | Cite as

Relativistic hydro- and thermodynamics in nonlinear scalar field

  • G. Dávid
Elementary Particles and Fields


A classical relativistic theory is proposed describing the hydrodynamics and thermodynamics of fermions in the presence of a nonlinear scalar field, which contributes to the rest mass of particles. The macro and microdynamics (i.e. hydrodynamics and Fermi motion) are separated in a covariant way. The obtained equations of motion, of field and of state are consistent with thermodynamics and with the conventional formulation of relativistic hydrodynamics. Static solutions can describe e.g. cosmological domain walls or scalar bags. The acoustic and scalar waves propagating in the medium have been investigated.


Scalar Field Thermodynamics Relativistic Hydrodynamic Fermi Motion Short Wavelength Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G. Marx, Acta Phys. Hung.,6, 353, 1956.CrossRefMathSciNetGoogle Scholar
  2. 2.
    K. F. Novobátzky, Ann. Phys. VI,11, 285, 1953.MATHCrossRefGoogle Scholar
  3. 3.
    G. Szamosi and G. Marx, Acta Phys. Hung.,4, 221, 1955.CrossRefGoogle Scholar
  4. 4.
    G. Szamosi, G. Marx, Ann. Phys.,15, 182, 1955.CrossRefGoogle Scholar
  5. 5.
    G. Marx, Bull. Polon. Acad. Sci. Cl. III,4, 29, 1956.MATHMathSciNetGoogle Scholar
  6. 6.
    G. Marx, P. Román, MTA III. Oszt. Közl.6, 269, 1956 (in Hungarian).MATHGoogle Scholar
  7. 7.
    G. Marx, Nucl. Phys.,1, 660, 1957.MathSciNetGoogle Scholar
  8. 8.
    G. Marx and J. Németh, Acta Phys. Hung.,18, 77, 1964.CrossRefGoogle Scholar
  9. 9.
    T. D. Lee and M. Margulies, Phys. Rev.,D11, 1591, 1975.ADSGoogle Scholar
  10. 10.
    G. Marx, Acta Phys. Austr.,42, 251, 1975.Google Scholar
  11. 11.
    G. Marx, Spontaneously Broken Symmetry and Vacuum Domains, manuscript, Budapest, 1974.Google Scholar
  12. 12.
    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Addison-Wesley Press, Cambridge, 1951.MATHGoogle Scholar
  13. 13.
    K. F. Novobátzky, The Theory of Relativity, Tankönyvkiadó, Budapest, 1963, (in Hungarian).Google Scholar
  14. 14.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, London, 1963.MATHGoogle Scholar
  15. 15.
    I. Fényes, Thermostatics and Thermodynamics, Müszaki Kiadó, Budapest, 1968, (in Hungarian).Google Scholar
  16. 16.
    L. Jánossy, P. Tasnády, Vector Calculus, Vol. 1, Tankönyvkiadó, Budapest, 1980 (in Hungarian).Google Scholar
  17. 17.
    G. Dávid, Relativistic Hydrodynamics of Fermions in Scalar Field, Thesis, Budapest, 1981 (in Hungarian).Google Scholar
  18. 18.
    G. Dávid, to be published.Google Scholar

Copyright information

© with the authors 1984

Authors and Affiliations

  • G. Dávid
    • 1
  1. 1.Department of Atomic PhysicsRoland Eötvös UniversityBudapestHungary

Personalised recommendations