Advertisement

Generalized Rarita-Schwinger equations for non-strange baryons

  • I. Lovas
  • K. Sailer
  • W. Greiner
Article
  • 21 Downloads

Abstract

The Rarita-Schwinger equations are generalized for particles having isospin. These equations provide a framework for the description of the non-strange baryons. The nucleon and delta fields are coupled. Their degeneracy can be resolved.

Keywords

Dirac Equation Internal Degree Valence Quark Hadronic Matter Mesonic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Bargmann and E.P. Wigner,Proc. Nat. Acad. Sci. (USA) 34 (1948) 211.MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    W. Rarita and J. Schwinger,Phys. Rev. 60 (1941) 61.MATHCrossRefADSGoogle Scholar
  3. 3.
    M. Gell-Mann,Phys. Lett. 8 (1964) 214.CrossRefADSGoogle Scholar
  4. 4.
    H.L. Anderson, E. Fermi, E.A. Long and D.E. Nagle,Phys. Rev. 85 (1952) 936.CrossRefADSGoogle Scholar
  5. 5.
    J.D. Walecka,Ann. Phys. 108 (1977) 301.CrossRefGoogle Scholar
  6. 6.
    I. Lovas, L. Molnár, K. Sailer and W. Greiner,Phys. Lett. B 328 (1994) 168.Google Scholar
  7. 7.
    B.M. Waldhauser, J. Theis, J.A. Maruhn, H. Stöcker and W. Greiner,Phys. Rev. C 36 (1987) 4.Google Scholar
  8. 8.
    K. Novobátzky,Z. für Physik 111 (1938) 292.MATHCrossRefGoogle Scholar
  9. 9.
    S. N. Gupta,Proc. Roy. Soc. A 63 (1950) 681.ADSGoogle Scholar
  10. 10.
    K. Bleuler,Helv. Phys. Acta 23 (1950) 567.MATHMathSciNetGoogle Scholar
  11. 11.
    P.A. Moldauer and K.M. CasePhys. Rev. 102 (1956) 279.MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó 1997

Authors and Affiliations

  • I. Lovas
    • 1
  • K. Sailer
    • 2
  • W. Greiner
    • 3
  1. 1.Research Group for Theoretical Physics (MTA-KLTE)Kossuth Lajos UniversityDebrecenHungary
  2. 2.Department of Theoretical PhysicsKossuth Lajos UniversityDebrecenHungary
  3. 3.Institute of Theoretical PhysicsJ. W. Goethe UniversityFrankfurt am MainGermany

Personalised recommendations