Gluonic three-jet cross section in hadron collisions at O(α s 4 ) with cone jet definition

  • Zoltán Trócsányi


The next-to-leading order three-jet cross section in hadron collisions is calculated in the simplified case, when the matrix elements of all QCD subprocesses are approximated by the pure gluon matrix element. The cone jet definition is used. Distribution of the three-jet invariant mass distribution is compared with experimental data obtained at the TEVATRON. The important property of reduced renormalization and factorization scale dependence of the next-to-leading order physical cross sections as compared to the Born cross section is demonstrated.


Transverse Energy Hadron Collision Parton Level Subtraction Scheme Hadron Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    CDF Collaboration: F. Abe et al.,Phys. Rev. D45 (1992) 1448.Google Scholar
  2. 2.
    D0 Collaboration: S. Abachi et al.,Phys. Rev. D53 (1996) 6000.Google Scholar
  3. 3.
    F.A. Berends, W.T. Giele and H. Kuijf,Nucl. Phys. B333 (1990) 120.CrossRefADSGoogle Scholar
  4. 4.
    H. Kuijf, Ph.D. Thesis, Leiden University, 1991.Google Scholar
  5. 5.
    Z. Bern, L. Dixon and D.A. Kosower,Phys. Rev. Lett. 70 (1993) 2677.CrossRefADSGoogle Scholar
  6. 6.
    Z. Kunszt, A. Signer and Z. Trócsányi,Phys. Lett. B336 (1994) 529.Google Scholar
  7. 7.
    Z. Bern L. Dixon and D.A. Kosower,Nucl. Phys. B437 (1995) 259.CrossRefADSGoogle Scholar
  8. 8.
    W. T. Giele and E.W.N Glover,Phys. Rev. D46 (1992) 1980; W.T. Giele, E.W.N Glover and D.A. Kosower,Nucl. Phys. B403 (1993) 633.ADSGoogle Scholar
  9. 9.
    S. Frixione, Z. Kunszt and A. Signer,Nucl. Phys. B467 (1996) 399.CrossRefADSGoogle Scholar
  10. 10.
    S. Catani and M. H. Seymour,Phys. Lett. B378 (1996) 287, hep-ph/9602277; preprint CERN-TH/96-29, hep-ph/9605323.Google Scholar
  11. 11.
    Z. Nagy and Z. Trócsányi, preprint KLTE-DTP/96-1, hep-ph/9610498, to appear inNucl. Phys. B.Google Scholar
  12. 12.
    B.L. Combridge and C.J. Maxwell,Nucl. Phys. B239 (1984) 429.CrossRefADSGoogle Scholar
  13. 13.
    S. Catani, Yu.L. Dokshitzer, M.H. Seymour and B.R. Webber,Nucl. Phys. B406 (1993) 187; S.D. Ellis and D. Soper,Phys. Rev. D48 (1993) 3160.CrossRefADSGoogle Scholar
  14. 14.
    Z. Trócsányi,Phys. Rev. Lett. 77 (1996) 2182.CrossRefADSGoogle Scholar
  15. 15.
    W.B. Kilgore and W.T. Giele, preprint FERMILAB-PUB-96/358-T, hep-ph/9610433.Google Scholar
  16. 16.
    J. Huth et al.,Proc. of the 1990 DPF Summer Study on High Energy Physics, Snowmass, Colorado, ed. E.L. Berger, World Scientific, Singapore, 1992, p. 134.Google Scholar
  17. 17.
    M. Mangano and S.J. Parke,Phys. Rep. 200 (1991) 301.CrossRefADSGoogle Scholar
  18. 18.
    S.D. Ellis, Z. Kunszt and D. Soper,Phys. Rev. Lett. 69 (1992) 1496.CrossRefADSGoogle Scholar
  19. 19.
    CTEQ collaboration: H.L. Lai et al.,Phys. Rev. D51 (1995) 4763.CrossRefADSGoogle Scholar

Copyright information

© Akadémiai Kiadó 1997

Authors and Affiliations

  • Zoltán Trócsányi
    • 1
  1. 1.Department of Theoretical PhysicsKLTEDebrecenHungary

Personalised recommendations