Advertisement

Production rates of excited fragment isotopes from the36Ar+Ag reaction at 35 MeV/nucleon

  • F. Deak
  • Á. Horváth
  • Á. Kiss
  • Z. Seres
  • A. Galonsky
  • H. Hama
  • L. Heilbronn
  • D. W. Sackett
  • H. R. Schelin
Article
  • 11 Downloads

Abstract

Previous studies showed that the binding energy plays a systematic and important role in the production of ground-state fragments in intermediate energy, heavy ion reactions. The production rates were measured as a function of fragment kinetic energy at angles of 15°, 30°, 45° and 60° for excited fragments of7Li,8Li,11Be and12B. Using a thermal model the total production of neutron unbound excited states was determined, and it was found that their production rates correspond to the previous systematic behaviour using the binding energies corrected by the excitation energies.

Keywords

Double Differential Cross Section Detector Telescope Collinear Geometry Fragment Kinetic Energy Excited Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Bauer,Phys. Rev. C38 (1988) 1297.CrossRefADSGoogle Scholar
  2. 2.
    G.J. Kunde, J. Pochadzalla, J. Aichelin, E. Berdermann, B. Berthier, C. Cerruti, C.K. Gelbke, J. Hubele, P. Kreutz, S. Leray, R. Lucas, U. Lynen, U. Milkau, W.F.J. Müller, C. Ngô, C.H. Pinkenburg, G. Raciti, H. Sann and W. Trautmann,Phys. Lett. B272 (1991) 202.Google Scholar
  3. 3.
    T.K. Nayak, T. Murakami, W.G. Lynch, K. Schwarz, D.J. Fields, C.K. Gelbke, Y.D. Kim, J. Pochodzalla, M.B. Tsang, H.M. Xu, F. Zhu and K. Kwiatkowski,Phys. Rev. C45 (1992) 132.CrossRefADSGoogle Scholar
  4. 4.
    F. Deák, Á. Horváth, Á. Kiss, Z. Seres, A. Galonsky, C.K. Gelbke, H. Hama, L. Heilbronn, D. Krofcheck, W.G. Lynch, D.W. Sackett, H.R. Schelin, M.B. Tsang, J. Kasagi and T. Murakami,Phys. Rev. C52 (1995) 219.CrossRefADSGoogle Scholar
  5. 5.
    L.G. Moretto and G.J. Wozniak,Ann. Rev. Nucl. Part. Sci. 43 (1993) 2318.CrossRefGoogle Scholar
  6. 6.
    Á. Horváth, F. Deák, Á. Kiss, Z. Seres, A. Galonsky, C.K. Gelbke, H. Hama, L. Heilbronn, D. Krofcheck, W.G. Lynch, D.W. Sackett, H.R. Schelin, M.B. Tsang, J. Kasagi and T. Murakami,Phys. Rev. C49 (1994) 1012.CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    L. Heilbronn, A. Galonsky, C.K. Gelbke, W.G. Lynch, T. Murakami, D. Sackett, H. Schelin, M.B. Tsang, F. Deák, A. Kiss, Z. Seres, J. Kasagi and B.A. Remington,Phys. Rev. C43 (1991) 2318.CrossRefADSGoogle Scholar
  8. 8.
    Handbook of Chemistry and Physics 72nd edition (CRC Press).Google Scholar
  9. 9.
    F. Deák, A. Kiss, Z. Seres, G. Caskey, A. Galonsky and B. Remington,Nucl. Instr. Methods A258 (1987) 67.CrossRefADSGoogle Scholar
  10. 10.
    A. Kiss, F. Deák, Z. Seres, G. Caskey, A. Galonsky, B. Remington and L. Heilbronn,Nucl. Phys. A499 (1989) 131.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1997

Authors and Affiliations

  • F. Deak
    • 1
  • Á. Horváth
    • 1
  • Á. Kiss
    • 1
  • Z. Seres
    • 2
  • A. Galonsky
    • 3
  • H. Hama
    • 3
  • L. Heilbronn
    • 3
  • D. W. Sackett
    • 3
  • H. R. Schelin
    • 3
  1. 1.Department of Atomic PhysicsRoland Eötvös UniversityBudapestHungary
  2. 2.KFKI Research Institute for Particle and Nuclear PhysicsBudapest 114Hungary
  3. 3.National Superconducting Cyclotron Laboratory and Department of Physics and AstronomyMichigan State UniversityEast LansingUSA

Personalised recommendations