Acta Physica Academiae Scientiarum Hungaricae

, Volume 50, Issue 4, pp 359–365 | Cite as

Ionization energies of the N2, CO, CO2, N2O, C2H2 and SiH4 molecules calculated by universal model potential

  • R. Gáspár
  • Á. Nagy
Atomic and Molecular Physics


A modified XαSW method with universal potential (MXαSWU) was used to calculate ionization energies of the N2, CO, CO2, N2O, C2H2 and SiH4 molecules. The calculated energies are in agreement with experiment and other calculations.


Ionization Energy Coulomb Potential Universal Potential Exchange Potential Versus Calculate Ionization Energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Gáspár andÁ. Nagy, Acta Univ. Debr.,21, 13, 1978.Google Scholar
  2. 2.
    R. Gáspár, Acta Phys. Hung.,2, 151, 1952.MATHCrossRefGoogle Scholar
  3. 3.
    R. Gáspár, Acta Univ. Debr.,19, 7, 1975.Google Scholar
  4. 4.
    T. L. Loucks, Augmented Plane Wave Method, Chap. 3., W. A. Benjamin Inc., New York, 1967.Google Scholar
  5. 5.
    K. H. Johnson andF. C. Smith, Jr., Multiple Scattering Program Description, I. B. M. Research Laboratory, San Jose, California, 1973.Google Scholar
  6. 6.
    K. Schwarz, Phys. Rev.,B5, 2466, 1972.ADSGoogle Scholar
  7. 7.
    J. C. Slater, Quantum Theory of Molecules and Solids, vol. II. p. 55. McGraw-Hill Book Co., New York, 1959.Google Scholar
  8. 8.
    J. W. D. Connolly, H. Siegbahn, U. Gelius andC. Nordling, J. Chem. Phys.,58, 4265, 1973.CrossRefADSGoogle Scholar
  9. 9.
    P. E. Cade, K. D. Sales andA. C. Wahl, J. Chem. Phys.,44, 1973, 1966.CrossRefADSGoogle Scholar
  10. 10.
    K. Siegbahn et al., ESCA Applied to Free Molecules, North-Holland, Amsterdam, 1969.Google Scholar
  11. 11.
    D. B. Neumann andJ. W. Moskowitz, J. Chem. Phys.,49, 2056, 1968.CrossRefADSGoogle Scholar
  12. 12.
    E. J. Baerends, Self-Consistent Molecular Hartree—Fock—Slater Calculations, Dissertation, Univ. Vrije, Amsterdam, 1975.Google Scholar
  13. 13.
    D. S. Boudreaux, Mol. Phys.,32, 145, 1976.CrossRefADSGoogle Scholar
  14. 14.
    M. G. Griffith andL. Goodman, J. Chem. Phys.,47, 4494, 1967.CrossRefADSGoogle Scholar
  15. 15.
    A. D. McLean, J. Chem. Phys.,32, 1595, 1960.CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    M. F. Guest andR. S. Saunders, Mol. Phys.,29, 873, 1975.CrossRefADSGoogle Scholar
  17. 17.
    J. C. Barthelat, Ph. Durand andA. Serafini, Mol. Phys.,33, 159, 1977.CrossRefADSGoogle Scholar
  18. 18.
    J. B. Danese andJ. W. D. Connolly, Int. J. Quant. Chem.,57, 279, 1973.Google Scholar
  19. 19.
    P. R. Andersen, D. E. Ellis andM. A. Ratner, Chem. Phys. (North-Holland)41, 209, 1979.CrossRefGoogle Scholar

Copyright information

© with the authors 1981

Authors and Affiliations

  • R. Gáspár
    • 1
  • Á. Nagy
    • 1
  1. 1.Institute of Theoretical PhysicsKossuth Lajos UniversityDebrecenHungary

Personalised recommendations