Advertisement

Acta Physica Academiae Scientiarum Hungaricae

, Volume 42, Issue 3, pp 251–260 | Cite as

Analogy between dynamics and statics related to variational mechanics

  • P. Horváthy
  • L. Úry
Article

Abstract

Using modern differential geometry we complete the classical analogy between dynamics and statics in mechanics. For every mechanical system satisfying Maxwell’s Principle a local variational principle is valid which in some cases can be extended to a global one. If a further regularity condition holds then we can get a Lagrangian function. There exist mechanical systems in Nature which satisfy Maxwell’s Principle but do not have a global variational formalism: such an example is the case of a polarized particle or a particle with spin.

Keywords

Lagrangian Function Local Group Directional Derivative Evolution Curve Local Solvability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.-M. Souriau, Structure des Systèmes Dynamiques, Dunod, Paris, 1970.MATHGoogle Scholar
  2. 2.
    R. Abraham, The Foundations of Mechanics, Benjamin, New York, 1967.MATHGoogle Scholar
  3. 3.
    J. Milnor, Morse Theory, Princeton Univ. Press, Princeton, 1963.MATHGoogle Scholar
  4. 4.
    E. Cartan, Leçons sur les Invariants Integraux, Hermann, Paris, 1922.MATHGoogle Scholar
  5. 5.
    L. LandauE. Lifchitz, Mécanique, Mir, Moscou, 1969.Google Scholar
  6. 6.
    C. Godbillon, Géométrie Différentielle et Mécanique Analytique Hermann, Paris, 1969.Google Scholar
  7. 7.
    Sulanke-Wintgen, Differentialgeometrie und Faserbündel, VEB Deutscher Verlag der Wissenschaften, Berlin, 1972.Google Scholar
  8. 8.
    J. Klein, Les Systèmes Dynamiques Abstraits, Ann. Inst. Fourier Grenoble,13, 191, 1963.MATHMathSciNetGoogle Scholar
  9. 9.
    L. H. Thomas, Phil. Mag.,3, 1, 1927.Google Scholar
  10. 10.
    V. Bargmann, L. Michel andV. L. Telegdi, Phys. Rev. Lett.,2, 435, 1959.CrossRefADSGoogle Scholar
  11. 11.
    R. Hermann, Differential Geometry and the Calculus of Variations, Benjamin, New York, 1970.Google Scholar
  12. 12.
    G. W. Mackey, The Mathematical Foundations of Quantum Mechanics, Benjamin, New York, 1963.MATHGoogle Scholar

Copyright information

© with the authors 1977

Authors and Affiliations

  • P. Horváthy
    • 1
  • L. Úry
    • 2
  1. 1.Institute of Chemical System EngineeringVeszprém University of Chemical EngineeringVeszprém
  2. 2.Department of MathematicsLorand Eötvös UniversityBudapest

Personalised recommendations