Acta Physica Hungarica

, Volume 60, Issue 1–2, pp 19–30 | Cite as

Some temperature dependent properties of potassium dihydrogen phosphate

  • H. I. Farag
  • M. S. Elmanharawy
  • A. Abdel-Kader
Condensed Matter


Single crystals of potassium dihydrogen phosphate (KDP) have been grown at room temperature from saturated aqueous solutions. The thermal behaviour has been studied by differential thermal analysis and confirmed by X-ray diffraction and infrared spectroscopy. When heated to 613 K, KDP loses its water content and a transition takes place from the tetragonal orthophase to the monoclinic meta-phase. The resistivity of KDP crystals has been found to decrease exponentially with temperature over the temperature range of 293 K to 383 K above which it attains a constant value independent of further temperature rises up to 478 K. A value of 0.588 eV has been estimated for the activation energy of rotation of the phosphate group which controls conduction over the temperature dependent region of the resistivity curve. Glow curves of gamma-ray irradiated single crystals subsume peaks similar to those detected for the polycrystalline powder. Energy depths varying from 0.20 eV to 0.46 eV have been calculated for the various trapping states created by gamma irradiation. Effects of increasing gamma dose have been studied and found to cause an increase in number and intensity of the glow peaks. Slight shifts in peak temperatures to lower values are also noted at high gamma doses and attributed to the combined effect of dose rate and interactions between trapping centres.


Differential Thermal Analysis Glow Curve Gamma Dose Resistivity Curve Potassium Dihydrogen Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. G. Cady, Piezoelectricity, McGraw-Hill Inc., New York, 1946.Google Scholar
  2. 2.
    F. Jena and G. Shirance, Ferroelectric Crystals, Pergamon Press, Oxford, 1962.Google Scholar
  3. 3.
    E. Nakumura, T. Mitsui and J. Furuishi, J. Phys. Soc. Japan,18, 1477, 1963.CrossRefADSGoogle Scholar
  4. 4.
    R. J. Mayer and J. L. Bjorkstam, J. Phys. Chem. Solids,23, 619, 1962.CrossRefADSGoogle Scholar
  5. 5.
    A. R. Ubbelohde and I. Woodward, Proc. Roy. Soc.,A118, 358, 1947ADSGoogle Scholar
  6. 6.
    G. E. Bacon and R. S. Pease, Proc. Roy. Soc.,A220, 397, 1953; Proc. Roy. Soc.,A230, 359, 1955.CrossRefADSGoogle Scholar
  7. 7.
    R. J. Nelmes, N. S. J. Kennedy and E. Baharie, Ferroelectrics (G. B.), 21, 439, 1978; Ferroelectrics (G. B.),24, 237, 1980; J. Phys. Chem.,13, 4841, 1980.Google Scholar
  8. 8.
    Y. Imry, I. Pelah and E. Wiener, J. Chem. Phys.,43, 2332, 1965.CrossRefADSGoogle Scholar
  9. 9.
    J. Grunberg, S. Levin, I. Pelah and E. Wiener, Solid State Commun.,5, 863, 1967.CrossRefADSGoogle Scholar
  10. 10.
    J. Grunberg, S. Levin, I. Pelah and Gerlich, Phys. Stat. Solidi,B49, 857, 1972.CrossRefGoogle Scholar
  11. 11.
    R. Blinc, V. Dimic, D. Kolar, G. Lahajnar, J. Stepisnik, S. Zumer, N. Vene and D. Hadzi, J. Chem. Phys.,49, 4996, 1968.CrossRefADSGoogle Scholar
  12. 12.
    E. Rapopert, J. Chem. Phys.,53, 311, 1970.CrossRefADSGoogle Scholar
  13. 13.
    G. Baldini, M. Cottini and E. Grilli, Solid State Commun.,11, 1257, 1972.CrossRefADSGoogle Scholar
  14. 14.
    S. Saito, K. Wada and R. Onaka, J. Phys. Soc. Japan,37, 711, 1974.CrossRefADSGoogle Scholar
  15. 15.
    B. N. Grib, I. I. Kondilenko, P. A. Korotkov, A. I. Pisanski and Yu. P. Tsyashchenko, Opt. Spectrosc.,38, 415, 1975.ADSGoogle Scholar
  16. 16.
    R. Abe, J. Phys. Soc. Japan,47, 1177, 1979.CrossRefADSGoogle Scholar
  17. 17.
    E. F. Kaelble, Handbook of X-rays for Diffraction, Emission, Absorption and Microscopy, McGraw-Hill Inc., New York, 1967.Google Scholar
  18. 18.
    M. S. Elmanharawy, Rev. Roum. Phys.,14, 1245, 1969.Google Scholar
  19. 19.
    L. B. Harris and G. J. Vella, J. Chem. Phys.,58, 4550, 1973.CrossRefADSGoogle Scholar
  20. 20.
    A. F. Loffe, Physics of Semiconductors, infosearch Ltd., London, 1960.Google Scholar
  21. 21.
    V. H. Schmidt and E. A. Uehling, Phys. Rev.,126, 447, 1962.CrossRefADSGoogle Scholar
  22. 22.
    A. I. Al-Adl, A. Abdel-Kader, M. S. Elmanharawy and H. I. Farag, Proceedings of the Fifth Conference on Solid State Physics, Assiut University, Egypt, February, 1982.Google Scholar
  23. 23.
    M. O’Keefe and C. T. Perrino, J. Phys. Chem. Solids,28, 211, 1967.CrossRefGoogle Scholar
  24. 24.
    E. Murphy, J. Appl. Phys.,35, 2609, 1964.CrossRefADSGoogle Scholar
  25. 25.
    J. M. Pollock and M. Sharan, J. Chem. Phys.,51, 3604, 1969.CrossRefADSGoogle Scholar
  26. 26.
    M. Sharon and A. K. Kalia, J. Solid State Chem.,21, 171, 1977.CrossRefADSGoogle Scholar
  27. 27.
    R. Blinc, J. Stepisnik and S. Zumer, J. Chem. Phys.,54, 187, 1971.CrossRefADSGoogle Scholar
  28. 28.
    R. Blinc and J. Pirs, J. Chem. Phys.,54, 1535, 1971.CrossRefADSGoogle Scholar
  29. 29.
    L. F. Heckelsberg and F. Daniels, J. Phys. Chem.,61, 414, 1957.CrossRefGoogle Scholar
  30. 30.
    L. I. Grossweiner and M. S. Matheson, J. Chem. Phys.,22, 1514, 1954.CrossRefADSGoogle Scholar
  31. 31.
    G. F. J. Garlick and A. F. Gibson, Proc. Phys. Soc.,60, 574, 1948.CrossRefADSGoogle Scholar
  32. 32.
    L. I. Grossweiner, J. Appl. Phys.,24, 1306, 1953.CrossRefADSGoogle Scholar
  33. 33.
    F. Urbach, Cornell Symposium on Preparation and Characteristics of Solid State Luminescent Materials, Wiley, New York, 1948.Google Scholar
  34. 34.
    M. S. Elmanharawy, Proc. Math. Phys. Soc. Egypt,49, 139, 1980.Google Scholar

Copyright information

© with the authors 1986

Authors and Affiliations

  • H. I. Farag
    • 1
  • M. S. Elmanharawy
    • 1
  • A. Abdel-Kader
    • 2
  1. 1.Physics Unit, National Cancer InstituteCairo UniversityCairoEgypt
  2. 2.Physics Department, Faculty of ScienceMenoufia UniversityMenoufiaEgypt

Personalised recommendations