Acta Physica Academiae Scientiarum Hungaricae

, Volume 49, Issue 4, pp 415–422 | Cite as

Kinetic model for vacancy transport caused by moving dislocations in ionic crystals

  • A. Tóth
  • T. Keszthelyi
  • J. Sárközi
Physics of Condensed Matter


A simplified kinetic model for the calculation of vacancy transport caused by moving dislocations is developed. The basic principle of the model is that the transport process is carried out by the diffusion of vacancies in the potential field of the moving dislocations. The numerical results obtained in ionic crystals agree well with the experimental results at room temperature, but at higher temperatures there is significant discrepancy between the theory and experiment. The estimations show that this discrepancy can be attributed to the unjustified neglects made during the evaluation of the measurements.


Vacancy Concentration Ionic Crystal Dislocation Velocity Atomic Jump Experimentat Room Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. H. Cottrell, Dislocations and Plastic Flow in Crystals, Oxford, 1953.Google Scholar
  2. 2.
    F. R. N. Nabarro, Phil. Mag.,35, 613, 1977.CrossRefADSGoogle Scholar
  3. 3.
    R. W. Whitworth, Adv. Phys.,24, 203, 1975.CrossRefADSGoogle Scholar
  4. 4.
    A. V. Stepanov, Z. Phys.,81, 560, 1933.CrossRefADSGoogle Scholar
  5. 5.
    V. I. Alshits, M. V. Galustashvili andI. M. Paperno, Kristallografiya,20, 1113, 1975.Google Scholar
  6. 6.
    A. H. Cottrell andM. A. Jaswon, Proc. Roy. Soc.,A 199, 104, 1949.MATHCrossRefADSGoogle Scholar
  7. 7.
    H. Yoshinaga andS. Morozumi, Phil. Mag.,23, 1367, 1971.CrossRefADSGoogle Scholar
  8. 8.
    H. R. Glyde, Rev. Mod. Phys.,39, 373, 1967.CrossRefADSGoogle Scholar
  9. 9.
    A. B. Lidiard, Handbuch der Physik, Vol.20, Springer-Verlag, Berlin 1957.Google Scholar
  10. 10.
    R. W. Whitworth, Phil. Mag.,17, 1207, 1968.CrossRefADSGoogle Scholar
  11. 11.
    A. Huddart andR. W. Whitworth, Phil. Mag.,27, 107, 1973.CrossRefADSGoogle Scholar
  12. 12.
    F. Bassani andR. Thomson, Phys. Rev.,102, 1264, 1956.CrossRefADSGoogle Scholar
  13. 13.
    R. W. Whitworth, Phil. Mag.,15, 305, 1967.CrossRefADSGoogle Scholar
  14. 14.
    H. Haven, Recueil Trav. Chim.,69, 1471, 1950.Google Scholar
  15. 15.
    T. G. Stoebe andP. L. Pratt, Proc. Brit. Ceram. Soc.,9, 181, 1967.Google Scholar
  16. 16.
    R. G. Fuller, Point Defects in Solids, Vol.1, Plenum Press, New York, 1972.Google Scholar
  17. 17.
    A. Tóth andJ. Sárközi, J. de Physique,C7, 604, 1976.Google Scholar
  18. 18.
    A. Tóth, Phys. Stat. Sol. (a),33, K47, 1976.CrossRefGoogle Scholar

Copyright information

© with the authors 1980

Authors and Affiliations

  • A. Tóth
    • 1
  • T. Keszthelyi
    • 1
  • J. Sárközi
    • 1
  1. 1.Department of Experimental Physics, Institute of PhysicsTechnical UniversityBudapestHungary

Personalised recommendations