Acta Physica Academiae Scientiarum Hungaricae

, Volume 32, Issue 1–4, pp 181–185 | Cite as

Symmetries of wigner coefficients and Thomae-Whipple functions

  • M. Huszár


Wigner coefficients of the three-dimensional rotation group can be brought into the form of Thomae-Whipple functions. The symmetry group of order 72, discovered by Regge, is a straightforward consequence of 6 forms of the 120 Thomae-Whipple functions. The question whether the remaining 114 forms of these functions lead to new symmetries is investigated. It is shown that if the Regge group is enlarged by the transformationsj→−j−1, a group or order 1440 is obtained, which is exactly the group generated by the interrelations between the 120 Thomae-Whipple functions.


Symmetry Group Regge Group Rotation Group Straightforward Consequence Generalize Hypergeometric Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Симметрии коэффициентов вигнера и функции томе-виппла


Коэффициенты Вигнера можно привести к виду функций Томе-Биппла. Наличне группы симметрий порядка 72, обнаруженной Редже, является непосредственным следствием шести разных видов 120 функций Томе-Виппла. Рассмотрен вопвос о том, приводят ли остальные 114 видов этих функпий к новым свойствам симметрий коэффициентов Редже. Показано, что если группа порядка 1440, которая производится с помощью соотношений между 120 функциями Томе-Виппла.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Regge, Symmetry Properties of Clebsch-Gordan s Coefficients. Nuovo Cim.,10, 544, 1958.Google Scholar
  2. 2.
    J. L. Burchnall andT. W. Chaundy, The Hypergeometric Identities of Cayley, Orr and Bailey. Proc. London Math. Soc. (2)50, 56, 1948.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    W. N. Bailey: Generalized Hypergeometric Series. Cambridge, 1935.Google Scholar

Copyright information

© with the authors 1972

Authors and Affiliations

  • M. Huszár
    • 1
  1. 1.Central Research institute for PhysicsBudapest

Personalised recommendations