Advertisement

Acta Physica Academiae Scientiarum Hungaricae

, Volume 32, Issue 1–4, pp 149–163 | Cite as

On the excitation mechanism and operation parameters of the 4416 Å He−Cd laser

  • M. Jánossy
  • V. V. Itagi
  • L. Csillag
Article

Abstract

Measurements carried out on a 50 Hz a.c. excited He−Cd laser operating at 4416 Å indicated the possibility that two processes are involved in the excitation mechanism for this laser transition. It is suggested that the two processes are (1) Penning ionization of neutral Cd atoms by collisions with He metastables, and (2) electron — Cd ion collisions. The theory developed on the basis of the suggested excitation mechanism gives quantitative data on operation parameters of the laser.

Keywords

Discharge Current Critical Current Laser State Discharge Tube Excitation Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

О механизме возбуждения и рабочих параметрах лазера 4416 Å He−Cd

Резюме

Измерения, проведенные с He−Cd лазером возбужденным переменным током в 50 Гц в рабочем состоянии при 4416 A, показывают на возможность, что механизм возбуждения для этого лазерного перехода складывается из двух процессов. Согласно авторам этими двумя процессами являются пеннингова ионизация нейтральных атомов Cd путем столкновений с метастабильными атомами He и столкновения электрон-ион Cd. Теория, разработанная на основе изложенного механизма возбуждения дает количественные данные о рабочих параметрах лазера.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. T. Silfvast, Applied Physics Letters,13, 169, 1968.CrossRefADSGoogle Scholar
  2. 2.
    L. D. Schearer andF. A. Padovani, Journal of Chemical Physics,52, 1618, 1970.CrossRefADSGoogle Scholar
  3. 3.
    L. Csillag, M. Jánossy, K. Kántor, K. Rózsa andT. Salamon, Journal of Physics D, 1970; Applied Physics3, 64.Google Scholar
  4. 4.
    W. T. Silfvast, Applied Physics Letters,15, 23, 1969.CrossRefADSGoogle Scholar
  5. 5.
    N. L. Oleson andA. V. Cooper, Advances in Electronics and Electron Physics,24, 155, Academic Press 1968.CrossRefGoogle Scholar
  6. 6.
    H. Pepin andM. G. Drouet, Physics Letters,33A, 31, 1970.ADSGoogle Scholar
  7. 7.
    L. Csillag, V. V. Itagi, M. Jánossy andK. Rózsa, Physics Letters,34A, 110, 1971.ADSGoogle Scholar
  8. 8.
    C. E. Webb, A. R. Turner-Smith andJ. M. Green, Journal of Physics B 1970; Atomic and Molecular Physics,3, 134.Google Scholar
  9. 9.
    M. B. Klein andD. Maydan, Applied Physics Letters,16, 509, 1970.CrossRefADSGoogle Scholar
  10. 10.
    S. R. Baumann andW. H. Smith, Journal of the Optical Society of America,60, 345, 1970.CrossRefADSGoogle Scholar
  11. 11.
    W. T. Silfvast, Paper presented at Conference on Quantum Electronics, Kyoto, 1970.Google Scholar
  12. 12.
    A. V. Phelps, Physical Review,99, 1307, 1955.CrossRefADSGoogle Scholar
  13. 13.
    B. L. Moiseiwitsch andS. J. Smith, Review of Modern Physics,40, 238, 1968.CrossRefADSGoogle Scholar
  14. 14.
    J. Y. Wada andH. Heil, IEEE Journal of Quantum Electronics, QE-1, 327, 1965.Google Scholar
  15. 15.
    S.C. Brown, Introduction to Electrical Discharges in Gases, Wiley and Sons Inc. 1966, 221.Google Scholar
  16. 16.
    J. R. Fendley Jr.,I. Gorog, K. G. Hernqvist andC. Sun, R. C. A. Review,30, 422, 1969.Google Scholar

Copyright information

© with the authors 1972

Authors and Affiliations

  • M. Jánossy
    • 1
  • V. V. Itagi
    • 2
  • L. Csillag
    • 1
  1. 1.Central Research Institute for PhysicsBudapest
  2. 2.Marathwada UniversityAurangabadIndia

Personalised recommendations