Acta Physica Academiae Scientiarum Hungaricae

, Volume 48, Issue 1, pp 57–67 | Cite as

Experimental investigation of anomalous magnetoresistance in monocrystalline lead sulphide

  • T. Porjesz
  • I. Kirschner
  • M. F. Kotkata
  • M. S. Zaghloul
  • G. Kovács
  • P. Debreceni
Physics of Condensed Matter


Investigation of galvanomagnetic effects was carried out in the temperature range of 1.5–350 K. The samples were made ofn- andp-type PhS, cut off in different orientations and rotated in the magnetic field.

The reproductibility of the measurement and the stability of the temperature was better than 0.1%.

The results show in the entire temperature range that the magnetoresistance contrary to accepted assumptions cannot be expressed in terms of only even powers of the magnetic field strength and a negative change appears as well.

Calculating the electron effective mass more precisely considering the electron motion in thek-space the experimental results could be explained in a simple way in the whole temperature range.


Magnetic Field Strength Hall Mobility Entire Temperature Range Hall Coefficient Lead Sulphide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Peierls, Leipziger Vorträge p. 75, Leipzig, 1930.Google Scholar
  2. 2.
    L. Nordheim andD. Blohincev, Z. Phys.,84, 168, 1933.MATHCrossRefADSGoogle Scholar
  3. 3.
    H. Jones andC. Zener, Proc. Roy. Soc.,A 144, 10, 1934.Google Scholar
  4. 4.
    W. Sasaki andDebruyn Ouboter, Physica,27, 877, 1961.CrossRefADSGoogle Scholar
  5. 5.
    J. F. Woods andC. H. Chen, Phys. Rev.,125 A, 1962, 1964.Google Scholar
  6. 6.
    I. K. Andronik, E. K. Arushan, O. V. Emelyanenko andD. N. Nasledov, Phys. Stat. Sol.,27, 45, 1968.CrossRefGoogle Scholar
  7. 7.
    O. V. Emelyanenko, T. C. Lagunova, A. N. Nasledov andR. N. Talankin, FTT,7, 1315, 1965.Google Scholar
  8. 8.
    O. V. Emelyanenko, E. E. Klotunus, T. C. Lagunova andA. N. Nasledov, FTP,1, 933, 1967.Google Scholar
  9. 9.
    W. Sasaki, Proc. Int. Conf. Phys. Semicond. Kyoto, p. 543, 1966.Google Scholar
  10. 10.
    R. J. Sladek andR. W. Keyes, Phys. Rev.,122, 437, 1961.CrossRefADSGoogle Scholar
  11. 11.
    N. Mikoshiba, Phys. Rev.,127, 1962, 1962.MATHCrossRefADSGoogle Scholar
  12. 12.
    Y. Toyozawa, J. Phys. Soc. Jap.,17, 986, 1962.CrossRefADSGoogle Scholar
  13. 13.
    Y. Tokozawa, Proc. Int. Conf. Semicond. Phys. Exeter, 104, 1962.Google Scholar
  14. 14.
    T. Porjesz, Phys. Stat. Sol.,22, K145, 1974.CrossRefGoogle Scholar
  15. 15.
    I. Kirschner, T. Porjesz, P. Zentai, G. Kiss andG. Remenyi, Cryogenics,14, 559, 1974.CrossRefGoogle Scholar
  16. 16.
    D. M. Finlayson andD. Greig, Proc. Phys. Soc.,B69, 796, 1956.CrossRefADSGoogle Scholar
  17. 17.
    D. M. Finlayson andI. A. Johnson, Phys. Stat. Sol., (b)71, 395, 1975.CrossRefGoogle Scholar
  18. 18.
    D. M. Finlayson andA. G. Matthewson, J. Phys. Chem. Solids,28, 1501, 1967.CrossRefADSGoogle Scholar
  19. 19.
    Ravits, Efimova andSmirnov, Moskva Izd. Nauka, 1968.Google Scholar

Copyright information

© with the authors 1980

Authors and Affiliations

  • T. Porjesz
    • 1
  • I. Kirschner
    • 1
  • M. F. Kotkata
    • 2
  • M. S. Zaghloul
    • 3
  • G. Kovács
    • 1
  • P. Debreceni
    • 1
  1. 1.Department for Low Temperature PhysicsRoland Eötvös UniversityBudapestHungary
  2. 2.Physics Department, Faculty of ScienceAin-Shams UniversityCairoEgypt
  3. 3.Physics Department, Faculty of ScienceAl-Azhar UniversityCairoEgypt

Personalised recommendations