Advertisement

Nonlinear model in quantum field theory

  • F. Mezei
Article
  • 23 Downloads

Abstract

The mass spectrum of a nonlinear real scalar field was sought for using Ritz’s variational method. In the case of suitable renormalization 1, 2 or 3 finite values of rest mass were found. The different types of these excitations belong to different inequivalent representations of the field operators.

Keywords

Hilbert Space Quantum Field Theory Nonlinear Model Separable Hilbert Space Canonical Commutation Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Нелинейная модель в квантовой теории поля

Резюме

В работе искался массовый спектр нелинейного реального скалярного поля вариационным методом Ритца. В случае соответствующей ренормализации найдены конечные значения массы покоя, равные 1, 2 или 3. Различные типы данных возбуждений принадлежат к различным неэквивалентным представлениям операторов поля.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. P. Dürr andW. Heisenberg, Z. Naturf.,16a, 726, 1961.ADSGoogle Scholar
  2. 2.
    E. M. Henley andW. Thirring, Elementary Quantum Field Theory, New York, 1962.Google Scholar
  3. 3.
    I. Goldstone, Nuovo Cimento,19, 154, 1961;G. Marx, Acta Phys. Hung.,14, 27, 1962;G. Kuti andG. Marx, Acta Phys. Hung.,17, 125, 1964;G. Marx andG. Kuti, preprint Budapest, 1964;G. Kuti andG. Marx, Acta Phys. Hung.,19, 67, 1965.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    J. v. Neumann, Math. Ann.,104, 570, 1931.CrossRefMathSciNetGoogle Scholar
  5. 5.
    L. I. Schiff, Phys. Rev.,130, 458, 1963.MATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    R. Haag andD. Kastler, J. of Math. Phys.,5, 848, 1964.MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    R. Haag, Brandeis University Summer Institute in Theoretical Physics, 353, 1960.Google Scholar
  8. 8.
    S. Kamefuchi andH. Umezava, Nuovo Cimento,31, 429, 1964.CrossRefGoogle Scholar

Copyright information

© with the authors 1968

Authors and Affiliations

  • F. Mezei
    • 1
  1. 1.Institute for Theoretical PhysicsRoland Eötvös UniversityBudapest

Personalised recommendations