Sum rules and covariance

  • I. Montvay
Chiral Symmetry Currents and Current Algebras


A representation of commutator matrix elements is derived in Lehmann-Symanzik-Zimmermann formalism and applied to current density algebra sum rules in an arbitrary frame of reference. The sum rules take a remarkably simple form if the current correlation functions obey multiple integral representations in the current masses. The reference frame dependence of the sum rules becomes explicit.


Current Correlation Function Arbitrary Frame Local Commutativity Pole Dominance Infinite Momentum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Правила сумм и ковариантность


Представление коммутаторных матричных элементов производится от формализма Лемана-Симанцика-Циммермана и применяется к правилам сумм алгебры токов в любой системе отчета. Правила сумм принимают особенно простую форму в случае, если корреляционные функции тока подчиняются интегральным представлениям в массах токов. Зависимость правил сумм от системы отчета становится явной.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Montvay, General sum rules from current density algebra, presentea at the XIVth International Conference on HEP Vienna, September 1968.Google Scholar
  2. 2.
    M. Gell-Mann, Physics1, 63, 1964.Google Scholar
  3. 3.
    T. D. Lee, S. Weinberg andB. Zumino, Phys. Rev. Letters,18, 1029, 1964.CrossRefADSGoogle Scholar
  4. 4.
    D. Amati, R. Jengo andE. Remiddi, Nuovo Cim.,51, 999, 1967.CrossRefADSGoogle Scholar
  5. 5.
    R. Jost andH. Lehmann, Nuovo Cim.,5, 1598, 1957;F. J. Dyson, Phys. Rev.,110, 1960, 1958.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    R. Jost, Helvetica Physica Acta,30, 409, 1957.MATHMathSciNetGoogle Scholar
  7. 7.
    M. O. Taha, Phys. Rev.,162, 1694, 1967.CrossRefADSGoogle Scholar
  8. 8.
    S. Weinberg andH. Schnitzer, Phys. Rev.,164, 1828, 1967.CrossRefADSGoogle Scholar
  9. 9.
    S. G. Brown andG. B. West, Phys. Rev. Letters,19, 812, 1967; Phys. Rev.,168, 1605, 1968.CrossRefADSGoogle Scholar
  10. 10.
    T. Das, V. S. Mathur andS. Okubo, Phys. Rev. Letters,19, 1067, 1967.CrossRefADSGoogle Scholar
  11. 11.
    F. Csikor andI. Montvay, Nucl. Phys., B5, 492, 1968., and Nucl. Phys.B 7, 268, 1968.CrossRefADSGoogle Scholar
  12. 12.
    I. Montvay, these Proceedings, p. 169.Google Scholar

Copyright information

© with the authors 1969

Authors and Affiliations

  • I. Montvay
    • 1
  1. 1.Institute of Theoretical PhysicsRoland Eötvös UniversityBudapest

Personalised recommendations