Acta Physica Hungarica

, Volume 75, Issue 1–4, pp 107–115 | Cite as

Neutron scattering from amorphous metals

  • P. Lamparter
Condensed Matter


Detailed information about the structure of amorphous metallic alloys, the so-called metallic glasses, is obtained from neutron diffraction in combination with the isotopic substitution technique. In many cases neutron diffraction and X-ray diffraction are complementary techniques. The atomic structure of these materials is characterized by distinctive topological and chemical ordering effects.

The establishment of theoretical models on the basis of accurate structural data provides a deeper insight into the 3-dimensional arrangement of the atoms in amorphous metals.

Neutron diffraction is particularly suited for the investigation of the distribution of hydrogen atoms in amorphous alloys.

Small angle scattering presents a means for the characterization of the inhomogeneous structure of metallic glasses.


Neutron Diffraction Metallic Glass Amorphous Alloy Pair Correlation Function Small Angle Neutron Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. N. J. Wagner, J. Non-Cryst. Sol.,31, 1, 1978.CrossRefADSGoogle Scholar
  2. 2.
    P. Lamparter, S. Steeb, Structure of Amorphous and Molten Alloys, in: Material Science and Technology, Vol. 1, VCH, Weinheim, 1993, pp. 217–228.Google Scholar
  3. 3.
    T. E. Faber and J. M. Ziman, Phil. Mag.,11, 153, 1965.CrossRefADSGoogle Scholar
  4. 4.
    N. W. Ashcroft and D. C. Langreth, Phys. Rev.,156, 685, 1967.CrossRefADSGoogle Scholar
  5. 5.
    A. B. Bhatia and D. E. Thornton, Phys. Rev.,B2, 3004, 1970.ADSCrossRefGoogle Scholar
  6. 6.
    P. Lamparter, A. Habenschuss and A. H. Narten, J. Non-Cryst. Sol.,86, 109, 1986.CrossRefADSGoogle Scholar
  7. 7.
    P. Lamparter and S. Steeb, Proc. 5th Int. Conf. on Rapidly Quenched Metals, 459, 1985.Google Scholar
  8. 8.
    P. Lamparter, W. Sperl, S. Steeb and J. Blétry, Z. Naturforsch.,37a, 1223, 1982.ADSGoogle Scholar
  9. 9.
    S. N. Ishmaev, S. L. Isakov, I. P. Sadikov, E. Sváb, L. Kőszegi, A. Lovas and Gy. Mészáros, J. Non.-Cryst. Sol.,94, 11, 1987.CrossRefADSGoogle Scholar
  10. 10.
    R. L. McGreevy and L. Pusztai, Molecular Simulation,1, 359, 1988. The RMC-program was kindly supplied by R. L. McGreevy.CrossRefGoogle Scholar
  11. 11.
    J. M. Dubois, P. H. Gaskell and G. LeCaer, Proc. Roy. Soc. Lond.,A402, 323, 1985.CrossRefADSGoogle Scholar
  12. 12.
    P. Lamparter and E. Steeb, Proc. 4th Int. Conf. on Non-Crystalline Materials, NCM4, 137, 1988.Google Scholar
  13. 13.
    A. Guinier and G. Fournet, Small Angle Scattering of X-Rays, Wiley and Sons, London, 1955.Google Scholar
  14. 14.
    Gy. Faigel and E. Sváb, Proc. 5th Int. Conf. on Rapidly Quenched Metals, 487, 1985.Google Scholar
  15. 15.
    P. Lamparter and B. Boucher, Z. Naturforsch.,48a, 1086, 1993.Google Scholar
  16. 16.
    P. Lamparter and S. Steeb, Physica,B180, 782, 1992.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1994

Authors and Affiliations

  • P. Lamparter
    • 1
  1. 1.Max-Planck-Institut für MetallforschungStuttgartGermany

Personalised recommendations