Acta Physica Academiae Scientiarum Hungaricae

, Volume 7, Issue 3, pp 289–311 | Cite as

Electronic structure of semi-conducting selenium and tellurium

  • R. Gáspár


The electronic structure of selenium and tellurium is investigated by applying the well-known theorems of quantum chemistry and the theory of solids. By taking the lattice structure of the crystal and the electronic structure of the atoms into account the energy band spectrum of semi-conducting selenium and tellurium is determined, a main characteristic of which is that the valence and conduction bands are composite. Both the valence and the conduction bands are superpositions of two bands. In one of the overlapping bands the mobility of charge carriers is small while in the other it is great. Some qualitative indication of the relative positions of the overlapping bands in given.Callen’s electronic structure scheme is analyzed in detail.


Selenium Tellurium Atomic Orbital Diatomic Molecule Electron Orbital 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Электронная структура полупроводников теллура и селена


Исследуется электронная структура теллура и селена на основе хорошо известных результатов теории квантовой химии и твердого тела. Определяется спектр энергии электронов полупроводников теллура и селена, учитывая известную структуру решетки кристалла и электронную структуру атомов. Главной характеристикой спектра энергии является сложность зон валентности и проводимости. Последние являются наложением двух зон. В одной из них подвижность носителей зарядов мала, а в другой — велика.

Статья оканчивается критикой картины электронной структуры Каллена.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See e. g.A. R. von Hippel, J. Chem. Phys.,16, 372, 1948.CrossRefADSGoogle Scholar
  2. 2.
    See e. g.G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, pp. 502–581, D. Van Nostrand Comp., 1953;Landolt—Börnstein, Zahlenwerte und Funktionen, Vol. I, Part 4, Kristalle, pp. 523–525, Springer Vlg., Berlin, 1955.Google Scholar
  3. 3.
    See e. g.H. Hartmann, Theorie der chemischen Bindung auf quantentheoretischer Grundlage, p. 191, Springer Vlg., Berlin, 1954.MATHGoogle Scholar
  4. 4.
    See e. g.H. Hartmann l. c. p. 193.MATHGoogle Scholar
  5. 5.
    F. Hund, Linienspektren und periodisches System der Elemente, J. Springer, Berlin, 1927.MATHGoogle Scholar
  6. 6.
    G. Nordheim-Pöschl, Ann. Physik,26, 258, 1936.MATHCrossRefADSGoogle Scholar
  7. 7.
    A. J. Bradley, Phil. Mag.,48, 477, 1924;N. K. Slattery, Phys. Rev.,21, 378, 1923; ibid.N. K. Slattery, Phys. Rev.,25, 333, 1925; see alsoA. R. von Hippel l. c. J. Chem. Phys.,16, 372, 1948.Google Scholar
  8. 8.
    See e. g.C. A. Coulson, Valence, p. 187, Clarendon Press, Oxford, 1952.Google Scholar
  9. 9.
    H. B. Callen, J. Chem. Phys.,22, 518, 1954.CrossRefADSGoogle Scholar

Copyright information

© with the authors 1957

Authors and Affiliations

  • R. Gáspár
    • 1
    • 2
  1. 1.Institute of Theoretical PhysicsKossuth Lajos UniversityDebrecen
  2. 2.Research Group for Theoretical PhysicsHungarian Academy of SciencesBudapest

Personalised recommendations