Advertisement

Acta Physica Academiae Scientiarum Hungaricae

, Volume 52, Issue 1, pp 31–37 | Cite as

Thermal expansion coefficient of ionic crystals— An interatomic potential approach

  • S. P. Srivastava
Condensed Matter
  • 43 Downloads

Abstract

Considering contributions of the cubic and other higher order anharmonic terms in the potential energy function, a new equation for the thermal expansion coefficient, α, for ionic solids has been derived. It has been shown that all the equations derived by earlier workers are either one or the other special case of this equation. The present equation has been applied to some face-centred cubic, body-centred cubic and zinc-blende structure types of ionic crystals to compute the values of α on the basis of Born—Mayer interaction potential function and on comparison with the experimental values of α a satisfactory agreement has been found.

Keywords

Thermal Expansion Coefficient Rabie Ionic Crystal Potential Energy Function CsBr 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. A. Hummel, J. Amer. Ceram. Soc.,33, 102, 1950;J.R. Partington, An Advance Treatise on Physical Chemistry, Vol. 3, Longman and Green Co. Ltd., London, 1952;J. B. Austin, J. Amer. Ceram. Soc.,35, 243, 1952.CrossRefGoogle Scholar
  2. 2.
    H. T. Amyth, J. Amer. Ceram. Soc.,38, 140, 1955.CrossRefGoogle Scholar
  3. 3.
    S. Kumar, Central Glass Ceram. Res. Inst. Bull. Calcutta,7, 58, 1960; Proc. Nat. Inst. Sci. India,25A, 364, 1959.Google Scholar
  4. 4.
    S. P. Srivastava, S. Kumar andM. P. Madan, Indian J. Phys.,41, 833, 1967;S. P. Srivastava andM. P. Madan, J. Phys. Soc. Japan,23, 1433, 1967;S. P. Srivastava, Phys. Status Solidi (b)50, k 123, 1973;J. N. Plendl, S. S. Mitra andP. J. Gielissee, Phys. Status Solidi, (b),12, 367, 1965.Google Scholar
  5. 5.
    R. C. Bowman, Jr., Phys. Chem. Solids,34, 1754, 1973.CrossRefADSGoogle Scholar
  6. 6.
    A. H. Wilson, Thermodynamics and Statistical Mechanics, Univ. Press, Cambridge, 1957.MATHGoogle Scholar
  7. 7.
    S. P. Srivastava andR. S. Saraswat, J. Phys. Chem. Solids,36, 351, 1975.CrossRefADSGoogle Scholar
  8. 8.
    W. E. Bleick, J. Chem. Phys.,2, 160, 1934.CrossRefADSGoogle Scholar
  9. 9.
    J. E. Mayer, J. Chem. Phys.,1, 330, 1933;J. E. Mayer andB. B. Levy, J. Chem. Phys.,1, 647, 1933.ADSGoogle Scholar
  10. 10.
    S. P. Srivastava andK. C. Lal, Zeit. f. physik. Chemie, New Folge,91, 153, 1974;S. P. Srivastava andK. C. Lal, J. Phys. Soc. Japan,28, 525, 1970.Google Scholar
  11. 11.
    S. P. Srivastava, S. Kumar andM. P. Madan, Indian J. Phys.,41, 833, 1967;M. L. Huggins andJ. E. Mayer, J. Chem. Phys.,5, 143, 1937;G. C. Benson andE. Dempsey, Proc. Roy. Soc.,A266, 344, 1962.Google Scholar
  12. 12.
    S. Hart, Brit. J. Appl. Phys. (J. Phys. D)1, 1285, 1968;F. D. Enck, Phys. Rev.,119, 1977, 1960.ADSGoogle Scholar
  13. 13.
    “American Institute of Physics Handbook” (McGraw Hill Book Co. Inc., N.Y.) 4–73, 1963.Google Scholar
  14. 14.
    J. E. Mayer, J. Chem. Phys.,1, 330, 1933;W. E. Bleick, J. Chem. Phys.,2, 160, 1934;J. E. Mayer andB. B. Levy, J. Chem. Phys.,1, 647, 1933.ADSGoogle Scholar

Copyright information

© with the authors 1982

Authors and Affiliations

  • S. P. Srivastava
    • 1
  1. 1.Indian Institute of PetroleumDehradunIndia

Personalised recommendations