Skip to main content
Log in

Thermal expansion coefficient of ionic crystals— An interatomic potential approach

  • Condensed Matter
  • Published:
Acta Physica Academiae Scientiarum Hungaricae

Abstract

Considering contributions of the cubic and other higher order anharmonic terms in the potential energy function, a new equation for the thermal expansion coefficient, α, for ionic solids has been derived. It has been shown that all the equations derived by earlier workers are either one or the other special case of this equation. The present equation has been applied to some face-centred cubic, body-centred cubic and zinc-blende structure types of ionic crystals to compute the values of α on the basis of Born—Mayer interaction potential function and on comparison with the experimental values of α a satisfactory agreement has been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Hummel, J. Amer. Ceram. Soc.,33, 102, 1950;J.R. Partington, An Advance Treatise on Physical Chemistry, Vol. 3, Longman and Green Co. Ltd., London, 1952;J. B. Austin, J. Amer. Ceram. Soc.,35, 243, 1952.

    Article  Google Scholar 

  2. H. T. Amyth, J. Amer. Ceram. Soc.,38, 140, 1955.

    Article  Google Scholar 

  3. S. Kumar, Central Glass Ceram. Res. Inst. Bull. Calcutta,7, 58, 1960; Proc. Nat. Inst. Sci. India,25A, 364, 1959.

    Google Scholar 

  4. S. P. Srivastava, S. Kumar andM. P. Madan, Indian J. Phys.,41, 833, 1967;S. P. Srivastava andM. P. Madan, J. Phys. Soc. Japan,23, 1433, 1967;S. P. Srivastava, Phys. Status Solidi (b)50, k 123, 1973;J. N. Plendl, S. S. Mitra andP. J. Gielissee, Phys. Status Solidi, (b),12, 367, 1965.

    Google Scholar 

  5. R. C. Bowman, Jr., Phys. Chem. Solids,34, 1754, 1973.

    Article  ADS  Google Scholar 

  6. A. H. Wilson, Thermodynamics and Statistical Mechanics, Univ. Press, Cambridge, 1957.

    MATH  Google Scholar 

  7. S. P. Srivastava andR. S. Saraswat, J. Phys. Chem. Solids,36, 351, 1975.

    Article  ADS  Google Scholar 

  8. W. E. Bleick, J. Chem. Phys.,2, 160, 1934.

    Article  ADS  Google Scholar 

  9. J. E. Mayer, J. Chem. Phys.,1, 330, 1933;J. E. Mayer andB. B. Levy, J. Chem. Phys.,1, 647, 1933.

    ADS  Google Scholar 

  10. S. P. Srivastava andK. C. Lal, Zeit. f. physik. Chemie, New Folge,91, 153, 1974;S. P. Srivastava andK. C. Lal, J. Phys. Soc. Japan,28, 525, 1970.

    Google Scholar 

  11. S. P. Srivastava, S. Kumar andM. P. Madan, Indian J. Phys.,41, 833, 1967;M. L. Huggins andJ. E. Mayer, J. Chem. Phys.,5, 143, 1937;G. C. Benson andE. Dempsey, Proc. Roy. Soc.,A266, 344, 1962.

    Google Scholar 

  12. S. Hart, Brit. J. Appl. Phys. (J. Phys. D)1, 1285, 1968;F. D. Enck, Phys. Rev.,119, 1977, 1960.

    ADS  Google Scholar 

  13. “American Institute of Physics Handbook” (McGraw Hill Book Co. Inc., N.Y.) 4–73, 1963.

  14. J. E. Mayer, J. Chem. Phys.,1, 330, 1933;W. E. Bleick, J. Chem. Phys.,2, 160, 1934;J. E. Mayer andB. B. Levy, J. Chem. Phys.,1, 647, 1933.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work was done at the Indian Institute of Technology, Kanpur, India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, S.P. Thermal expansion coefficient of ionic crystals— An interatomic potential approach. Acta Physica 52, 31–37 (1982). https://doi.org/10.1007/BF03156203

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03156203

Keywords

Navigation