The anharmonic linear chain

  • T. Siklós
Condensed Matter


A simple model of the crystals, the anharmonic linear chain with nearest neighbour interaction will be investigated briefly in the first order of the self-consistent phonon field theory (SCPT). In this case we can obtain a simple explicit solution which helps to clarify some aspects of the SCPT and the phenomenon of the lattice instability.


Linear Thermal Expansion Harmonic Approximation Instability Temperature Morse Potential Equilibrium Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford Univ. Press (Clarendon), New York and London, 1954.MATHGoogle Scholar
  2. 2.
    A. A. Maradudin, E. W. Montroll, G. H. Weiss and I. P. Ipatova, Solid State Physics, Supplement 3, second ed., Theory of Lattice Dynamics in the Harmonic Approximation, Academic Press, New York and London, 1971.Google Scholar
  3. 3.
    G. Leibfried, in Handbuch der Physik, edited by S. Flügge, 2-nd ed. Vol. 7., part 1., p. 104, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955.Google Scholar
  4. 4.
    G. Leibfried, W. Ludwig, in Solid State Physics, edited by F. Seitz and D. Turnbull, Vol. 12., p. 275, Academic Press, New York and London, 1961.Google Scholar
  5. 5.
    G. K. Horton, Rare Gas Solids — A Century of Excitement and Progress, in Rare Gas Solids, edited by M. L. Klein and J. A. Venables, Vol. 1. Chap. 1, p. 1, Academic Press, London-New York-San Francisco, 1976.Google Scholar
  6. 6.
    M. Born, in Festschrift zur Feier des zweihundertjährigen Bestehens der Akademie der Wissenschaften in Göttingen: I. Mathematisch-physikalische Klasse, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1951.Google Scholar
  7. 7.
    N. R. Werthamer, Am. J. Phys.,37, 763, 1969; Phys. Rev.,B1, 572, 1970.CrossRefADSGoogle Scholar
  8. 8.
    Ph. F. Choquard, The Anharmonic Crystals, W. A. Benjamin Inc., New York, 1967.Google Scholar
  9. 9.
    N. M. Plakida and T. Siklós, Acta Phys. Hung.,25, 17, 1968.Google Scholar
  10. 10.
    N. M. Plakida and T. Siklós, Phys. Stat. Sol.,33, 103, 1969.CrossRefGoogle Scholar
  11. 11.
    N. M. Plakida and T. Siklós, Acta Phys. Hung.,45, 37, 1978.Google Scholar
  12. 12.
    N. M. Plakida, Teor. i Mat. Fiz.,12, 135, 1972.Google Scholar
  13. 13.
    N. N. Bogoliubov and S. V. Tyablikov, Dokl. Akad. Nauk SSSR,126, 53, 1959.Google Scholar
  14. 14.
    D. N. Zubarev, Sov. Phys. — Uspekhi,3, 320, 1960; Non-equilibrium Statistical Mechanics, § 16., Plenum Press, New York, 1974.CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    N. M. Plakida and T. Siklós, Phys. Lett.,26A, 342, 1968; Acta Phys. Hung.,26, 387, 1969.ADSGoogle Scholar
  16. 16.
    T. Siklós, Acta Phys. Hung.,30, 181, 1971.Google Scholar
  17. 17.
    T. Siklós, Acta Phys. Hung.,30, 301, 1971.CrossRefGoogle Scholar
  18. 18.
    J. S. Dugdale and D. K. MacDonald, Phys. Rev.,96, 57, 1954.MATHCrossRefADSGoogle Scholar
  19. 19.
    N. M. Plakida and T. Siklós, Phys. Stat. Sol.,33, 113, 1969.CrossRefGoogle Scholar

Copyright information

© with the authors 1982

Authors and Affiliations

  • T. Siklós
    • 1
  1. 1.Central Research Institute for PhysicsBudapestHungary

Personalised recommendations