Beyond the Navier-Stokes equation: Including random thermal fluctuations

  • Zsolt I. Lázár
  • László P. Csernai
  • Sangyong Jeon
  • Joseph I. Kapusta
  • Iosif A. Lázár
  • Dénes Molnár


Dissipation and fluctuation is analyzed in discretized systems with external and internal heat bath. Discretized and continuum dissipation and fluctuation theorems are derived for both cases. It is shown that the continuum limit of the internal heat bath case leads to the Navier-Stokes equation.


Continuum Limit Langevin Equation Heat Bath Force Density Fluid Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.P. Csernai and J.I. Kapusta,Phys. Rev. Lett. 69 (1992) 737;Phys. Rev. D46 (1992) 1379.CrossRefADSGoogle Scholar
  2. 2.
    T. Csörgő and L.P. Csernai,Phys. Lett. B333 (1994) 494.Google Scholar
  3. 3.
    L.P. Csernai and I.N. Mishustin,Phys. Rev. Lett. 74 (1995) 5005.CrossRefADSGoogle Scholar
  4. 4.
    M. Asakawa, Z. Huang and X.N. Wong,Phys. Rev. Lett. 74 (1995) 3126.CrossRefADSGoogle Scholar
  5. 5.
    T.S. Biró, D. Molnár, Feng Zhonghan and L.P. Csernai, submitted toPhys. Rev. D (1997)Google Scholar
  6. 6.
    L.P. Csernai and Z. Néda,Phys. Lett. B337 (1994) 25.Google Scholar
  7. 7.
    R.W. Hockney and J.W. Eastwood,Computer Simulation Using Particles, Adam Hilger, Philadelphia, 1988.MATHCrossRefGoogle Scholar
  8. 8.
    J.J. Monaghan,Heavy Ion Phys. 5 (1997) 367.Google Scholar
  9. 9.
    L.P. Csernai, S. Jeon, J.I. Kapusta, I.A. Lázár, Zs.I. Lázár and D. Molnár, in preparation.Google Scholar
  10. 10.
    F. Reif,Fundamentals of Statistical and Thermal Physics, McGraw-Hill, 1965.Google Scholar
  11. 11.
    R.P. Feynman and F.L. Vernon,Ann. Phys. 24 (1963) 118.CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    M. Gell-Mann and J.B. Hartle,Phys. Rev. D 47 (1993) 3345.ADSMathSciNetGoogle Scholar
  13. 13.
    J.I. Kapusta,Finite Temperature Field Theory, Cambridge University Press, 1989.Google Scholar
  14. 14.
    M. Gleiser and R.O. Ramos,Phys. Rev. D50 (1994) 2441.ADSGoogle Scholar
  15. 15.
    D. Boyanovsky, D. Lee and A. Singh,Phys. Rev. D48 (1993) 800.ADSGoogle Scholar

Copyright information

© Akadémiai Kiadó 1997

Authors and Affiliations

  • Zsolt I. Lázár
    • 1
  • László P. Csernai
    • 1
  • Sangyong Jeon
    • 2
  • Joseph I. Kapusta
    • 2
  • Iosif A. Lázár
    • 3
  • Dénes Molnár
    • 1
  1. 1.Theoretical Physics SectionUniversity of BergenBergenNorway
  2. 2.Department of PhysicsUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of PhysicsBabeş-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations