Acta Physica Hungarica

, Volume 69, Issue 3–4, pp 285–308 | Cite as

Differential flux and spectrum calculations for a novel high-intensity 14-MeV cutoff neutron source based on the1H(t,n)3He source reaction

  • S. Cierjacks
  • Y. Hino
Nuclear Physics


Flux and spectrum calculations for a novel high-intensity, high-energy neutron source recently proposed for fusion materials testing are presented. The usefulness of the source, whose technical feasibility has been demonstrated in a separate journal paper, depends not only on the possibility to produce high neutron fluxes in large test volumes, but also on the possibility of reasonably tailoring fluxes, flux gradients and neutron spectra to irradiation conditions in future fusion reactors. To meet the needs for fusion materials testing, a source concept has been proposed that involves two intense triton beams incident on two separate water-jet targets in facing geometry for irradiation of a common test cell. Small variations of the relative orientation angle, the distance of the two target centres from their common vertex, and the diameter of the incident triton beams, provide good opportunity to modify spatial and spectral neutron distributions in the test cell according to materials testing needs. Calculated flux contours and spatial neutron spectra are presented for a limited range of orientation angles, of distances of the beam centres from the vertex, and of triton beam diameters. Results for the differential flux contours, flux-dependent volumes, and space-dependent neutron spectra are given, and their advantages for special materials testing conditions are discussed.


Orientation Angle Neutron Source Neutron Spectrum Spectrum Calculation Flux Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Directorate General XII — Fusion Programme, Commission of the European Communities, Proc. Workshop on the Requirements of a High Energy Neutron Source, Rome, Oct. 20–22, 1988, CEC-Report EUR FU BRU/XII-230/88-MATIA 12, IEA Paris, Dec. 1988.Google Scholar
  2. 2.
    A. Miyahara and F. H. Coensgen (Eds.), Proc. of the Japan-US Workshop P-119 on 14 MeV Neutron Sources for Materials R & D Based on Plasma Devices, Nagoya, June 7–10, 1988, Institute of Plasma Physics, Nagoya University Report IPPJ-T-37, 1988.Google Scholar
  3. 3.
    R. Verbeek (Ed.), Report on the International Fusion Materials Irradiation Facility Evaluation Panel, San Diego, California, February 14–17, 1989, IEA Publication, 1989.Google Scholar
  4. 4.
    S. Cierjacks, J. Fusion Energy, 8, Nos. 3/4, 193, 1990.Google Scholar
  5. 5.
    S. Cierjacks, Y. Hino and M. Drosg, Nucl. Sci. Eng.,106, 183, 1990.Google Scholar
  6. 6.
    G. P. Lawrence, G. L. Varsamis, R. A. Krakowski, T. S. Bhatia, F. W. Guy, G. H. Neuschaefer, N. M. Schnurr and B. Blind, “High-Flux Accelerator-Based Neutron Source for Fusion Materials and Technology Testing” in R. Verbeek (Ed.), Report on the International Fusion Materials Irradiation Facility Evaluation Panel, San Diego, California, February 14–17, 1989, IEA Publication, p. 149, 1989.Google Scholar
  7. 7.
    H. Liskien and A. Paulsen, Nuclear Data Tables,11, 569, 1973.CrossRefGoogle Scholar
  8. 8.
    M. Drosg, “Production of Fast Monoenergetic Neutrons by Charged-Particle Reactions Among the Hydrogen Isotopes”, in Proc. of the IAEA Consultants Meeting on Neutron Source Properties, Debrecen, Hungary, March 1980, K. Okamoto (ed.), INDC-Report, INDC(NDS)-114/GT, p. 201, 1980.Google Scholar
  9. 9.
    M. Drosg and O. Schwerer, “Production of Monoenergetic Neutrons Between 0.1 and 23 MeV”, in Handbook of Nuclear Activation Data, IAEA Report Series, No 273, p. 83, Vienna, 1987.Google Scholar
  10. 10.
    D. M. Drake, G. F. Auchampaugh, E. D. Arthur, C. E. Ragan and P. G. Young, Nucl. Sci. Eng.,63, 401, 1977.Google Scholar
  11. 11.
    P. W. Lisowski, G. F. Auchampaugh, D. M. Drake, M. Drosg, G. Haouat, N. W. Hill and L. Nilsson, Cross Section for Neutron-Induced Neutron Producing Reactions in6Li and7Li at 5.96 and 9.83 MeV, Los Alamos Report, LA-8342-MS, 1980.Google Scholar
  12. 12.
    M. Drosg, P. W. Lisowski, R. A. Hardekopf, D. M. Drake and M. Muellner, Cross Sections for Neutron Producing Reactions Induced by 6 and 10 MeV Neutrons on10B and11B, Los Alamos Report, LA-10665-MS, 1986.Google Scholar
  13. 13.
    M. Drosg, Z. Physik,A298, 297, 1980.CrossRefADSGoogle Scholar
  14. 14.
    W. Deuchars, J. L. Perkin and R. Batchelor, Nucl. Instrum. and Meth.,23, 305, 1963.CrossRefADSGoogle Scholar
  15. 15.
    M. Drosg, G. Haouat, W. Stoeffel and D. M. Drake, Differential Cross Sections of3H(p,n)3He and of6Li(n,t)4He by Using Triton Beams Between 5.95 and 19.15 MeV and a Re-evaluation of the p-T Neutron Production Cross Section up to 12 MeV, Los Alamos Report, LA-10444-MS, LANL, 1985.Google Scholar
  16. 16.
    M. Drosg, The3H(p,n)3He Differential Cross Section Below 5 MeV and the n-3He Cross Section, Los Alamos Report, LA-8215-MS, 1980.Google Scholar
  17. 17.
    E. Schmidt, Technische Thermodynamik, Springer Verlag, Berlin, 1962, p. 71.Google Scholar
  18. 18.
    G. J. de Leeuw, A. A. Haasz and P. C. Stangeby, Nucl. Instrum. Meth.,145, 119, 1977.CrossRefGoogle Scholar
  19. 19.
    D. D. Armstrong, C. R. Emigh, K. L. Meier, E. A. Meyer and D. J. Schneider, Nucl. Instrum. Meth.,145, 127, 1977.CrossRefADSGoogle Scholar
  20. 20.
    K. L. Meier, Los Alamos National Laboratory, private communication 1989.Google Scholar
  21. 21.
    Dubbel Taschenbuch für den Maschinenbau, 13th Edition, Eds. F. Sass, Ch. Bouche and A. Leitner, Vol. II, 321, Springer Verlag, Berlin, 1970.Google Scholar
  22. 22.
    J. F. Ziegler, Handbook of Stopping Cross Sections for Energetic Ions in All Elements, ed. J. Ziegler, Pergamon Press, Oxford, 1980.Google Scholar

Copyright information

© Akadémiai Kiadó 1991

Authors and Affiliations

  • S. Cierjacks
    • 1
  • Y. Hino
    • 1
  1. 1.Karlsruhe Nuclear Research Centre, Association KfK-EuratomInstitute for Materials and Solid State ResearchKarlsruheFederal Republic of Germany

Personalised recommendations