Advertisement

Intermediates and activated complexes in the chromyl chloride oxidation of organic compounds

  • Fillmore Freeman
Article

Keywords

Adduct Epoxide Cycloalkanes Decalin Carbon Tetrachloride Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.E. Sisler,Inorg. Syn.,2, 205 (1946).CrossRefGoogle Scholar
  2. 2.
    Alfa Inorganics, Inc.Google Scholar
  3. 3.
    K.B. Wiberg,Oxidation in Organic Chemistry, Part A, Academic Press, New York, N.Y., 1965, p. 69.Google Scholar
  4. 4.
    W.H. Hartford and M. Darrin,Chem. Rev.,58, 1 (1958).CrossRefGoogle Scholar
  5. 5.
    C.D. Nenitzescu,Bull. soc. chim. France, 1349 (1968).Google Scholar
  6. 6.
    F. Freeman, P.J. Cameron and R.H. DuBois,J. Org. Chem.,33, 3970 (1968).CrossRefGoogle Scholar
  7. 7.
    F. Freeman, R.H. DuBois and T.G. McLaughlin,Org. Syn.,51, 4(1971).Google Scholar
  8. 8.
    F. Freeman and N.J. Yamachika,J. Am. Chem. Soc.,94 (1972), in press.Google Scholar
  9. 9.
    F. Freeman, P.J. Cameron and R.H. DuBois, inFundamental Organic Chemistry Laboratory Manual, K.T. Finely and J. Wilson, Jr., Eds., Prentice-Hall, Inc., Englewood Cliffs, N.J., 1970 p.54.Google Scholar
  10. 10.
    A. Etard,Compt. Rend.,84, 127 (1877).Google Scholar
  11. 11.
    J.K. Palmer,J. Am. Chem. Soc.,60, 2360 (1938).CrossRefGoogle Scholar
  12. 12.
    A. Bartecki,Roczniki Chem. 38, 1455 (1964).Google Scholar
  13. 13.
    H. Stammreich, K. Kawai and Y. Tareares,Spectrochim. Acta,15, 438 (1959).CrossRefGoogle Scholar
  14. 14.
    F.A. Miller, G.L. Carlson and W.B. White,Spectrochim. Acta,15, 709 (1959).CrossRefGoogle Scholar
  15. 15.
    W.B. Hobbs,J. Chem. Phys.,28, 1220 (1958).CrossRefGoogle Scholar
  16. 16.
    T.M. Dunn and A.H. Francis,J. Mol. Spectr.,25, 86 (1968).CrossRefGoogle Scholar
  17. 17.
    O.H. Wheeler,Can. J. Chem.,38, 2137 (1960).CrossRefGoogle Scholar
  18. 18.
    G.L. Carlson,U.S. At. Energy Comm.,TID-12, 120 (1961).Google Scholar
  19. 19.
    F. Freeman and N.J. Yamachika,J. Am. Chem. Soc.,93, 3730 (1970).CrossRefGoogle Scholar
  20. 20.
    F. Freeman, P.D. McCart, and N.J. Yamachika,J. Am. Chem. Soc.,92, 6621 (1970).Google Scholar
  21. 21.
    K.J. Johnson, J.P. Hunt and H.W. Dodgen,J. Chem. Phys.,51, 4493 (1969).CrossRefGoogle Scholar
  22. 22.
    G.D. Flesch and H.J. Sec,J. Am. Chem. Soc.,81, 1787 (1959).CrossRefGoogle Scholar
  23. 23.
    G.D. Flesch, R.M. White and H.J. Sec,Int. J. Mass Spectrom. Ion Phys.,3, 339 (1969).CrossRefGoogle Scholar
  24. 24.
    Many of the earlier investigators performed experiments in solvents which react with chromyl chloride.Google Scholar
  25. 25.
    R.C. Paul, O. Khosla and R. Dev,Indian J. Chem.,12, 1254 (1969).Google Scholar
  26. 26.
    R.C. Makhija and R.A. Stairs,Can. J. Chem.,47, 2293 (1969).CrossRefGoogle Scholar
  27. 27.
    A 1∶3 adduct has also been reported.Google Scholar
  28. 28.
    R.C. Paul, P. Singh and S.L. Chadha,Indian J. Chem.,7, 625 (1964).Google Scholar
  29. 29. (a)
    J. Bernard and M. Camelot,Compt. Rend.,258, 5881 (1964); (b). M. Camelot,Rev. Chim. Mineral.,6 853 (1969).Google Scholar
  30. 30.
    E.P.J. Elenius, A. Meretoja and P. Kosonen,Suomen Kemistilehti,37B, 114 (1964);Chem. Abstr.,63, 10989 (1965).Google Scholar
  31. 31.
    H.S. Fry and J.L. Donnelly,J. Am. Chem. Soc.,40, 478 (1918).CrossRefGoogle Scholar
  32. 32.
    A. Apsitis, A. J. Sanka and A. Ya. Blum,Uch. Zap Rizhsk. Politekhn. Inst.,6, 63 (1962);Chem. Abstr.,59, 7149 (1963).Google Scholar
  33. 33.
    A. Bartecki,Roczniki Chem.,39, 167 (1965).Google Scholar
  34. 34.
    C.C. Hobbs, Jr. and B. Houston,J. Am. Chem. Soc.,76, 1254 (1954),CrossRefGoogle Scholar
  35. 35.
    Presumably, the number and significance of the secondary reactions could be minimized by decomposing the adductin situ under reducing conditions with nascent sulfur dioxide or finely powdered zinc dust6,7.Google Scholar
  36. 36.
    S.J. Cristol and K.R. Eilar,J. Am. Chem. Soc.,72, 4353 (1950).CrossRefGoogle Scholar
  37. 37.
    R.A. Stairs, D.G.M. Diaper and A.L. Gatzke,Can. J. Chem.,41, 1059 (1963).CrossRefGoogle Scholar
  38. 38.
    A. Tillotson and B. Houston,J. Am. Chem. Soc.,73, 221 (1951).CrossRefGoogle Scholar
  39. 39.
    K.B. Wiberg, B. Marshall and G. Foster,Tetrahedron Letters, 345 (1962).Google Scholar
  40. 40.
    V. Psemetchi, I. Nesoiu, M. Rentea and C.D. Nenitzescu,Rev. Roum. Chem.,14, 1567 (1969).Google Scholar
  41. 41.
    C.N. Rentea, I. Necsoiu, M. Rentea, A. Ghenciulescu and C.D. Nenitzescu,Tetrahedron,22, 3501 (1966).CrossRefGoogle Scholar
  42. 42.
    K.B. Wiberg and R. Eisenthal,Tetrahedron,20, 1151 (1964).CrossRefGoogle Scholar
  43. 43.
    Mechanistic discussion will be primarily concerned with the probable initial oxidation products. Of course, the primary and secondary reactions can occur simultaneously and independently.Google Scholar
  44. 44.
    Elimination could occur through a carbonium ion or through a “cis” mechanism involving the gegen-ion HCrO2Cl2 .Google Scholar
  45. 45.
    D.J. Cram and M.R. Sahyun,J. Am. Chem. Soc.,85, 1257 (1963).CrossRefGoogle Scholar
  46. 46.
    P.S. Skell and W.L. Hall,J. Am. Chem. Soc.,85, 2851 (1963).CrossRefGoogle Scholar
  47. 47.
    C.N. Rentea, M. Rentea, I. Necsoiu and C.D. Nenitzescu,Tetrahedron,24, 4667 (1968).CrossRefGoogle Scholar
  48. 48.
    W.P. Campbell and G.C. Harris,J. Am. Chem. Soc.,63, 2721 (1941).CrossRefGoogle Scholar
  49. 49.
    A.S. Hussey, J.F. Saurage and R.H. Baker,J. Org. Chem.,26, 256 (1961).CrossRefGoogle Scholar
  50. 50.
    W. Hückel, D. Maucher, O. Flechtig, J. Kurz, M. Heinzel and A. Hubele,Ann. Chem.,645, 115 (1961).Google Scholar
  51. 51.
    W. Hückel and R. Schwen,Am. Chem.,604, 97 (1957).Google Scholar
  52. 52.
    R.A. Stairs,Can. J. Chem.,38, 2028 (1960).CrossRefGoogle Scholar
  53. 53.
    F. Freeman and K.W. Arledge,J. Org. Chem.,37 (1972), in press.Google Scholar
  54. 54.
    F. Freeman and N.J. Yamachika,Tetrahedron Letters, 3615 (1969).Google Scholar
  55. 55.
    A. Etard,Ann. Chim. Phys.,22, 218 (1881).Google Scholar
  56. 56.
    O.H. Wheeler,Can. J. Chem.,36, 667 (1958).CrossRefGoogle Scholar
  57. 57.
    I. Necsoiu, A.T. Balaban, I. Pascaru, E. Sliam, M. Elian and C.D. Nenitzescu,Tetrahedron,19, 1133 (1963).CrossRefGoogle Scholar
  58. 58.
    C.N. Rentea, M. Rentea, I Necsoiu and C.D. Nenitzescu,Rev. Roum. Chem.,12, 1495 (1967).Google Scholar
  59. 59.
    A.I. Brodskii, I.P. Gragerov, I.F. Franchuk, L.V. Sulima, I.I. Kukhtemko, V.A. Lunenok, A.S. Fomenko and M.M. Aleksankin,Tr. Tashkentsk. Konf. pomirnomu Ispol’z. At. Energii, Akad. Nauk Uz. SSR,2, 327 (1960);Chem. Abstr.,57, 9258 (1962).Google Scholar
  60. 60.
    L.V. Sulima and I.P. Gragenov,J. Gen. Chem. (USSR),29, 3787 (1959).Google Scholar
  61. 61.
    I. Necsoiu, V. Przemetchi, A. Ghenciulescu, C.N. Rentea and C.D. Nenitzescu,Tetrahedron,22, 3037 (1966).CrossRefGoogle Scholar
  62. 62.
    I. Necsoiu, A. Ghenciulescu, M. Rentea, C.N. Rentea and C.D. Nenitzescu,Rev. Roum. Chem.,12, 1503 (1967).Google Scholar
  63. 63.
    I.P. Gragerov and M.P. Ponomarchuk,Zh. Org. Khim.,5, 1145 (1969);Chem. Abstr.,71, 76079 (1969).Google Scholar
  64. 64.
    A. Ghenciulescu, I. Necsoiu, M. Rentea and C.D. Nenitzescu,Rev. Roum. Chem.,14, 1543 (1969).Google Scholar
  65. 65.
    O.H. Wheeler,Can. J. Chem.,36, 949 (1958).CrossRefGoogle Scholar
  66. 66.
    F. Freeman, R.H. DuBois and N.J. Yamachika,Tetrahedron,25, 3441 (1969).CrossRefGoogle Scholar
  67. 67.
    A.L. Gatzke, R.A. Stairs and D.G.M. Diaper,Can. J. Chem.,46, 3695 (1968).CrossRefGoogle Scholar
  68. 68.
    H.C. Duffin and R.B. Tucker,Chem. Ind. (London), 1262 (1966).Google Scholar
  69. 69.
    R.A. Stairs and J.W. Burns,Can. J. Chem.,39, 960 (1961).CrossRefGoogle Scholar
  70. 70.
    R.A. Stairs,Can. J. Chem.,42, 550 (1964).CrossRefGoogle Scholar
  71. 71.
    R.A. Stairs,Can. J. Chem.,40, 1656 (1962).CrossRefGoogle Scholar
  72. 72.
    O.H. Wheeler,Can. J. Chem.,42, 706 (1964).CrossRefGoogle Scholar
  73. 73.
    I.P. Gragerov and M.P. Ponomarcnuk,Zh. Obshch. Khim.,32, 3568 (1962);Chem. Abstr.,58, 12387 (1963).Google Scholar
  74. 74.
    H.C. Duffin and R.B. Tucker,Tetrahedron,23, 2803 (1967).CrossRefGoogle Scholar
  75. 75.
    C.H. Duffin and R.B. Tucker,Tetrahedron,24, 389 (1968).CrossRefGoogle Scholar
  76. 76.
    K.B. Wiberg and R.J. Evans,Tetrahedron,8, 313 (1960).CrossRefGoogle Scholar
  77. 77.
    Elemental analysis of the chromyl chloride — styrene adduct indicated in approximate composition of CrO2Cl2·C8H8·58.Google Scholar
  78. 78.
    H. Schildknecht and A. Schmidt. Univ. of Heidelberg, private communication.Google Scholar
  79. 79.
    M.A. Davis and W.J. Hickinbottom,J. Chem. Soc., 2205 (1958).Google Scholar
  80. 80.
    W.A. Mosher, F.W. Steffgen and P.T. Landsbury,J. Org. Chem.,26, 670 (1961).CrossRefGoogle Scholar
  81. 81.
    J. Roček and J.C. Drozd,J. Am. Chem. Soc.,92, 6668 (1970).CrossRefGoogle Scholar
  82. 82.
    P.S. Kalsi, K.S. Kumar and M.S. Wadia,Chem. Ind. (London), 71 (1971).Google Scholar
  83. 83.
    W.J. Hickinbottom and G.E. Moussa,J. Chem. Soc., 4195 (1957).Google Scholar
  84. 84.
    G.E. Moussa,J. Appl. Chem. (London),12, 385 (1962).Google Scholar
  85. 85.
    W.A. Mosher and J.R. Celeste,Rev. Chim. Acad. Rep. Populaire Roumaine,7, 1085 (1962).Google Scholar
  86. 86. (a).
    t-Butyl alchol is inert to chromyl chloride87.Google Scholar
  87. 87. (b).
    It has been reported without experimental details that chromyl chloride oxidizes 1,1,2,2-tetramethylethanol to acetone (4.5%) and to 3,3-dimethyl-2-butanone (23%), and 1,1,2,2-tetraphenylethanol to 9,10-diphenylphenanthrene (67) in 80% yield5.Google Scholar
  88. 87.
    R. Slack and W.A. Waters,J. Chem. Soc., 594 (1949).Google Scholar
  89. 88.
    F. Freeman, unpublished results, 1970.Google Scholar
  90. 89.
    A.F. Tatyrek, NASA Accession No. N65-29916,Rept. No. PA-TM-1644 (1965);Chem. Abstr.,66, 81949 (1967).Google Scholar
  91. 90.
    J.A. Strickson and C.A. Brooks,Tetrahedron,23, 2817 (1967).CrossRefGoogle Scholar
  92. 91.
    J.A. Strickson and M. Leigh,Tetrahedron,24, 5145 (1968).CrossRefGoogle Scholar
  93. 92.
    A. Ghenciulescu, I. Necsoiu and C.D. Nenitzescu,Rev. Roum. Chim.,14, 1553 (1969).Google Scholar
  94. 93.
    J.S. Sandhu, S. Mohan and P.S. Sethi,Chem. Ind. (London), 1297 (1970).Google Scholar

Copyright information

© Springer 1973

Authors and Affiliations

  • Fillmore Freeman
    • 1
  1. 1.Department of ChemistryCalifornia State CollegeLong BeachU.S.A.

Personalised recommendations