Acta Physica Hungarica

, Volume 62, Issue 2–4, pp 267–275 | Cite as

The glass transition feedback: Review and comments

  • T. Geszti
Condensed Matter


Different implementations of the mode-coupling feedback scenario of the fluid-glass transition are compared. It is pointed out that the relaxation of density fluctuations is at least partially controlled by shear motions coupled to one-particle diffusion. Neutron inelastic scattering studies are suggested to be done on heat-treated samples, at low temperatures.


Glass Transition Mode Coupling Density Fluctuation Vertex Function Slow Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Vogel, Phys. Z.,22, 645, 1921.Google Scholar
  2. 2.
    G. S. Fulcher, J. Am. Ceram. Soc.,8, 339, 1925.CrossRefGoogle Scholar
  3. 3.
    E. Leutheusser, Phys. Rev. A,29, 2765, 1984.CrossRefADSGoogle Scholar
  4. 4.
    U. Bengtzelius, W. Götze and A. Sjölander, J. Phys. C,17, 5915, 1984.CrossRefADSGoogle Scholar
  5. 5.
    A. J. Batchinski, Z. Phys. Chem.,84, 643, 1913.Google Scholar
  6. 6.
    V. H. Hildebrand, Viscosity and Diffusion, Wiley, New York, 1977.Google Scholar
  7. 7.
    G. Adam and J. H. Gibbs, J. Chem. Phys.,43, 139, 1965.CrossRefADSGoogle Scholar
  8. 8.
    M. H. Cohen and D. Turnbull, J. Chem. Phys.,31, 1164, 1959.CrossRefADSGoogle Scholar
  9. 9.
    M. H. Cohen and G. Grest, Phys. Rev. B,20, 1077, 1979.CrossRefADSGoogle Scholar
  10. 10.
    F. Spaepen, in: Physics of Defects, ed. R. Balian, M. Kléman and J. P. Poirier, North-Holland, Amsterdam, 133, 1981.Google Scholar
  11. 11.
    T. Geszti, J. Phys. C,16, 5805, 1983.CrossRefADSGoogle Scholar
  12. 12.
    T. R. Kirkpatrick, Phys. Rev. A,31, 939, 1985.CrossRefADSGoogle Scholar
  13. 13.
    S. P. Das, G. F. Mazenko, S. Ramaswamy and J. J. Toner, Phys. Rev. Lett.,54, 118, 1985.CrossRefADSGoogle Scholar
  14. 14.
    K. Kawasaki, Ann. Phys. (N.Y.),61, 1, 1970.CrossRefADSGoogle Scholar
  15. 15.
    W. Götze, private communication.Google Scholar
  16. 16.
    S. F. Edwards and P. W. Anderson, J. Phys. F,12, 965, 1975.CrossRefADSGoogle Scholar
  17. 17.
    K. S. Singwi and A. Sjölander, Phys. Rev.,120, 1093, 1960.CrossRefADSGoogle Scholar
  18. 18.
    F. Mezei, ed., Neutron Spin Echo, Springer, Berlin, 1980.Google Scholar
  19. 19.
    G. H. Vineyard, Phys. Rev.,110, 999, 1958.CrossRefADSGoogle Scholar
  20. 20.
    S. R. Nagel, Phys. Rev. B,16, 1694, 1977.CrossRefADSGoogle Scholar
  21. 21.
    L. V. Woodcock, J. Chem. Soc. Faraday Trans. 2,73, 11, 1977.CrossRefGoogle Scholar
  22. 22.
    L. V. Woodcock and C. A. Angell, Phys. Rev. Lett.,47, 1129, 1981.CrossRefADSGoogle Scholar
  23. 23.
    F. Mezei, private communication.Google Scholar
  24. 24.
    J. F. Bacon, NASA Contract Rep. 1856, 1971.Google Scholar
  25. 25.
    K. I. Inagaki, Aichi-Ken Koguo Shidosho Hokuku No9, 52, 1973.Google Scholar
  26. 26.
    C. A. Angell, in: Relaxations in Complex Systems, ed. K. Ngai and G. B. Wright, National Technical Information Service, U. S. Department of Commerce, Springfield, 1985.Google Scholar

Copyright information

© Akadémiai Kiadó 1987

Authors and Affiliations

  • T. Geszti
    • 1
    • 2
  1. 1.Department of Atomic PhysicsRoland Eötvös UniversityBudapestHungary
  2. 2.Research Institute for Technical Physics of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations