Acta Physica Hungarica

, Volume 62, Issue 2–4, pp 177–184 | Cite as

On a problem of spontaneous compactification

  • P. Forgács
  • Z. Horváth
  • L. Palla
Elementary Particles and Fields


We investigate how the equations governing spontaneous compactification to nonsymmetric coset spaces can be solved for two particular classes of internal spaces.


Tangent Space Gauge Field Coset Space Curly Bracket Gauge Coupling Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Cremmer and J. Scherk, Nucl. Phys.,B103, 399, 1976,B108, 409, 1976;B118, 61, 1977; Z. Horváth, L. Palla, E. Cremmer and J. Scherk, Nucl. Phys.,B127, 57, 1977; Z. Horváth and L. Palla, Nucl. Phys.,B142, 327, 1978; J. F. Luciani, Nucl. Phys.,B135, 111, 1978.CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    E. Witten, Princeton preprint, Oct. 1983; Ch. Wetterich, Bern Univ. preprint BUTP — 85/4; D. Olive and P. West, Nucl. Phys.,B217, 248, 1983; S. Randjbar-Daemi, A. Salam and J. Strathdee, Trieste preprint IC/84/15; P. Forgács and G. Zoupanos, Phys. Lett.,B148, 99, 1984; F. A. Bais et al., CERN preprint TH 4045, 1984.Google Scholar
  3. 3.
    S. Randjbar-Daemi and R. Percacci, Phys. Lett.,B117, 41, 1982; S. Randjbar-Daemi, A. Salam and J. Strathdee, Nucl. Phys.,B214, 491, 1983;B242, 447, 1984; P. H. Frampton, P. J. Moxhay and K. Yamamoto, Phys. Lett.,144B, 354, 1984; Ch. Wetterich, Nucl. Phys.,B244, 355, 1984;B260, 402, 1985; A. N. Schellekens, Nucl. Phys.,B248, 706, 1984.MathSciNetGoogle Scholar
  4. 4.
    P. Forgács, Z. Horváth and L. Palla, KFKI-report-1985-51 (rev.) to be published in Z. Phys. C.Google Scholar
  5. 5.
    A. N. Schellekens, Nucl. Phys.,B256, 109, 1985.CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    P. Forgács and N. Manton, Comm. Math. Phys.,72, 15, 1980.CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    A. Salam and J. Strathdee, Ann. Phys.,141, 316, 1986; L. Palla, Z. Phys.C. 24, 195, 1984.ADSMathSciNetGoogle Scholar
  8. 8.
    J. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications, John Wiley and Sons, New York-London-Sidney-Toronto, 1974.MATHGoogle Scholar
  9. 9.
    K. Pilch and A. N. Schellekens, Stony Brook preprint ITP-SB-84-20.Google Scholar

Copyright information

© Akadémiai Kiadó 1987

Authors and Affiliations

  • P. Forgács
    • 1
  • Z. Horváth
    • 2
  • L. Palla
    • 2
  1. 1.Department of PhysicsThe UniversitySouthamptonEngland
  2. 2.Institute for Theoretical PhysicsRoland Eötvös UniversityBudapestHungary

Personalised recommendations