Acta Physica Hungarica

, Volume 66, Issue 1–4, pp 321–337 | Cite as

Nontrivial Pfaffian forms in cosmology

  • B. Lukács
  • G. Paál


The compatibility of possible continuous cosmologic particle creation with thermodynamics is studied. It is found that with the usualK=2 Pfafflan (dQ=TdS) is compatible only in very special cases.K≥3 Pfafflans can easily be reconciled with continuous creation. Since then the full thermodynamic state space is accessible by quasistatic adiabatic processes, such systems show local rather than global irreversibility. This property may prevent Heat Death even with idefinitely old model Universes.


Entropy Production Exponential Expansion Cosmologic Principle Continuous Creation Total Entropy Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.T. Landsberg, Thermodynamics, Interscience, N. Y., 1961.MATHGoogle Scholar
  2. 2.
    S. Weinberg, Gravitation and Cosmology, Wiley, N. Y., 1972.Google Scholar
  3. 3.
    A. Guth, Phys. Rev.,D23, 347, 1981.ADSGoogle Scholar
  4. 4.
    J.D. Barrow, Fund. of Cosmic Phys.,8, 83, 1983.ADSGoogle Scholar
  5. 5.
    J. Kuti, B. Lukács, J. Polónyi and K. Szlachányi, Phys. Lett.95B, 75, 1980.ADSGoogle Scholar
  6. 6.
    L. Diósi, Bettina Keszthelyi, B. Lukács and G. Paál, Astron. Nachr.,306, 213, 1985.CrossRefADSGoogle Scholar
  7. 7.
    B. Kämpfer and H. Schultz, Z. Phys.,C21, 351, 1984.Google Scholar
  8. 8.
    L. Diósi, Bettina Keszthelyi, B. Lukács and G. Paál, Acta Phys. Pol.,B15, 909, 1984.ADSGoogle Scholar
  9. 9.
    L. Diósi, Bettina Keszthelyi, B. Lukács and G. Paál, Phys. Lett.,157B, 23, 1985.ADSGoogle Scholar
  10. 10.
    B. Kämpfer, B. Lukács and G. Paál, Phys. Lett.,187B, 17, 1987.ADSGoogle Scholar
  11. 11.
    B. Lukács, Proc. 4th Marcel Grossmann Meeting, ed. R. Ruffini, Elsevier, 1986, p. 1393.Google Scholar
  12. 12.
    B. Lukács, Unpublished Theses, 1988 (in Hungarian).Google Scholar
  13. 13.
    B. Lukács and K. Martinás, Acta Phys. Slov.,36, 86, 1986.Google Scholar
  14. 14.
    I. Gyarmati, Acta Chem. Hung.,80, 147, 1962.Google Scholar
  15. 15.
    I. Gyarmati, J. Non-Eq. Thermodyn.,2, 233, 1977.CrossRefGoogle Scholar
  16. 16.
    J. Ehlers, in Relativity, Astrophysics and Cosmology, ed. W. Israel, D. Reidel, Dordrecht-Boston, 1973.Google Scholar
  17. 17.
    B. Lukács and K. Martinás, Ann. Phys.,45, 102, 1988.CrossRefGoogle Scholar
  18. 18.
    L. Diósi, Bettina Keszthelyi, B. Lukács and G. Paál, Acta Phys. Hung.,60, 299, 1986.Google Scholar
  19. 19.
    B. Lukács, K. Martinás and T. Pacher, Astron. Nachr.,307, 171, 1986.MATHCrossRefADSGoogle Scholar
  20. 20.
    B. Lukács, K. Martinás and G. Paál, in Gravity Today, ed. Z. Perjés, World Scientific, Singapore, 1988, p. 247.Google Scholar
  21. 21.
    H. Poincaré, Lecons sur les hypothéses cosmogoniques, Hermann, Paris, 1911.MATHGoogle Scholar
  22. 22.
    J.V. Narlikar, The Primeval Universe. Oxford University Press, Oxford, 1988.Google Scholar
  23. 23.
    Ya.B. Zel'dovich, Usp. Fiz. Nauk,133, 479, 1981.ADSGoogle Scholar
  24. 24.
    H.P. Robertson and T.W. Noonan, Relativity and Cosmology, Saunders, N.Y. 1969.Google Scholar
  25. 25.
    P.A.M. Dirac, Nature,139, 323, 1937; Proc. Roy. Soc. London,A165, 199, 1938; Proc. Roy. Soc. Lond.A338, 439, 1973.MATHCrossRefADSGoogle Scholar
  26. 26.
    F. Hoyle and G. Hoyle: Fifth Planet, Preface, Penguin, Harmondsworth, 1963.Google Scholar
  27. 27.
    R. penrose, Proc. 1st Marcel Grossmann Meeting Trieste, North-Holland, Amsterdam 1977, p. 173.Google Scholar
  28. 28.
    L.P. Eisenhardt, Riemannian Geometry, Princeton University Press, Princeton, 1950.Google Scholar
  29. 29.
    B. Lukács and K. Martinás, Phys. Lett.,114A, 306, 1986.ADSGoogle Scholar
  30. 30.
    M. Heller, Z. Klimek and L. Suszycki, Astroph. Space Sci.,20, 205, 1973.CrossRefADSGoogle Scholar
  31. 31.
    F. Hoyle, Mon. Not. r. Astr. Soc.,108, 372, 1948.MATHADSGoogle Scholar
  32. 32.
    Beatrix Paál, Közg. SzemleXXXV, 229, 1988 (in Hungarian).Google Scholar
  33. 33.
    B. Lukács, Acta Oec. (in print); KFKI-1988-56.Google Scholar
  34. 34.
    I.L. Rozental, Big Bang Bounce, Springer, Berlin, 1988.Google Scholar
  35. 35.
    M. Planck, Ann. Phys.,19, 759, 1934.MATHCrossRefGoogle Scholar
  36. 36.
    N. Hausen, Z. Phys.,35, 517, 1934.MATHGoogle Scholar

Copyright information

© Akadémiai Kiadó 1989

Authors and Affiliations

  • B. Lukács
    • 1
  • G. Paál
    • 2
  1. 1.Central Research Institute for PhysicsBudapestHungary
  2. 2.Konkoly Observatory of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations