Acta Physica Hungarica

, Volume 66, Issue 1–4, pp 221–232 | Cite as

The accessibility of arbitrary boundary conditions in membrane transport

  • G. Dickel


Onsager's principle of least dissipation of energy applied to the transport of arbitrary solutions of electrolytes through a membrane involves the variation with respect totime andposition. The time variation yields the familiar expression of the entropy production being restricted to aninfinitesimal volume elementqdx. In order to go over to the entropy production in a finite volume elementqΔx, Hamilton's variation of the endpointx in thestationary state must be performed. The usual difficulties arising from this variational problem of order one in the concentration gradients can be overcome by a theorem of Caratheodory dealing with the problem of “arbitrary extremals”.

Regarding that variational problems result inpotential representations it will be shown that two conditions must be satisfied in order to obtain such a representation: Theisotonicity and the restriction to ions ofequal valency. The potential function found in this way is identical with Planck's equation of the diffusion potential found already 1890. It represents thesingular solution of the Nernst differential equation. Thegeneral solution of this equation, however, presents no potential function. Thus, there exist in a membrane neighbouring states beingnot accessible along extremals. Thus, Onsager's principle of least dissipation of energy can be satisfied only in discrete cases.


Entropy Production Reverse Osmosis Faraday Trans Irreversible Process Singular Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Dickel, J. Chem. Soc., Faraday Trans. 1,85, 1671, 1989.CrossRefGoogle Scholar
  2. 2.
    L. Onsager, Phys. Rev.,37, 405, 1931.MATHCrossRefADSGoogle Scholar
  3. 3.
    I. Gyarmati, Non-equilibrium Thermodynamics, Springer, Berlin-Heidelberg-New York, 1970.Google Scholar
  4. 4.
    G. Dickel and G. Backhaus, J. Chem. Soc., Faraday Trans. 2,74, 115, 124, 1978.CrossRefGoogle Scholar
  5. 5.
    G. Dickel, in Topics in Bioelectrochemistry and Bioenergetics, ed. by. G. Milazzo, J. Wiley and Sons, Ltd., New York 1981, Vol. 4, pp. 271–340.Google Scholar
  6. 6.
    D. Hilbert, Mathem. Annalen,62, 351, 1906.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    G. Dickel, Faraday Discuss. Chem. Soc.,77, 157, 1984.CrossRefGoogle Scholar
  8. 8.
    Karl Weierstrass, Vorlesungen über Variationsrechnung, bearbeitet von Rudolf Rothe, Mathematische Werke von Karl Weierstrass, 7. Band. Leipzig, Akademische Verlagsgesellschaft, 1927.MATHGoogle Scholar
  9. 9.
    C. Caratheodory, Deutsche Literaturzeitung 1928, Heft, 1, 343; Gesammelte mathematische Schriften Bd. 5. C. H. Beck'sche Verlagsbuchhandlung, München, 1954.Google Scholar
  10. 10.
    C. Caratheodory, Variationsrechnung, in Frank-Mises, Die Differential- und Integralgleichungen der Mechanik und Physik. F. Vieweg u. Sohn, Braunschweig, 1930.Google Scholar
  11. 11.
    G. Dickel, Z. Phys. Chem. (München),158, 109, 1988.Google Scholar
  12. 12.
    M. Planck, Ann. Phys. u. Chem. N. F.,40, 561, 1890.CrossRefADSGoogle Scholar
  13. 13.
    D. Goldman, J. Gen. Physiol.,27, 37, 1943.CrossRefGoogle Scholar
  14. 14.
    C. Caratheodory, Mathem. Annalen,67, 355, 1909.CrossRefMathSciNetGoogle Scholar
  15. 15.
    G. Dickel, Z. Phys. Chem. (München),150, 123, 1986.Google Scholar
  16. 16.
    I. Prigogine, Etude thermodynamic des phénomènes irréversibles, Dunod, Paris and Desoer, Liège, 1947.Google Scholar
  17. 17.
    G. Dickel and B. Pitesa, J. Chem. Soc. Faraday Trans. 2,77, 441, 1981.CrossRefGoogle Scholar
  18. 18.
    G. Dickel, J. Chem. Soc., Faraday Trans. 1,82, 3289, 1986.CrossRefGoogle Scholar
  19. 19.
    H. Vink, J. Chem. Soc., Faraday. Trans. 1,79, 2355, 1983.CrossRefGoogle Scholar
  20. 20.
    S. Sourirajan, Reverse Osmosis, Logos Press Limited, London, 1970.Google Scholar
  21. 21.
    G. Schmid, Z. Elektrochem., 1954,54, 424.Google Scholar
  22. 22.
    G. Dickel and A. Chabor, J. Chem. Soc., Faraday Trans. 1, 1986,82, 3293.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1989

Authors and Affiliations

  • G. Dickel
    • 1
  1. 1.Institute of Physical ChemistryUniversity of MunichMunich 2West Germany

Personalised recommendations