Acta Physica Hungarica

, Volume 66, Issue 1–4, pp 19–28 | Cite as

On the extension of the Governing Principle of Dissipative Processes to nonlinear constitutive equations

  • B. Nyíri


On the basis of a special form of Gyarmati's principle (equivalent to that in the linear range) a new extension of the Governing Principle of Dissipative Processes and its local form is presented. It presumes neither the linearity of the constitutive equations, nor the existence of dissipation potentials or any other nonlinear generalisation of the Onsager Relations. The existence of a domain where this extremum problem possesses a unique solution is proven. The global (integral) form of the principle is also given. Some properties, requirements and interpretations of the principle are discussed.


Constitutive Equation Entropy Production Dissipative Process Variable Pair Dissipation Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Gyarmati, Ann. Physik (Leipzig),23, 353, 1969.CrossRefADSGoogle Scholar
  2. 2.
    H. Farkas and Z. Noszticzius, Ann. Physik (Leipzig),27, 341, 1971.ADSGoogle Scholar
  3. 3.
    J. Verhás, Ann. Physik (Leipzig),40, 189, 1983.CrossRefADSGoogle Scholar
  4. 4.
    J. Verhás, Thermodynamics and Rheology, Technical Publ. House Budapest 1985 (in Hungarian)Google Scholar
  5. 5.
    H. Farkas, J. Non-Equilib. Thermodyn.,1, 117, 1976.CrossRefGoogle Scholar
  6. 6.
    I. Gyarmati, Period. Polytech.,5, 219, 1961;5, 321, 1961.Google Scholar
  7. 7.
    I. Gyarmati, Non-equilibrium Thermodynamics, Springer, Berlin-Heidelberg-New York, 1970.Google Scholar
  8. 8.
    J.M.C. Li, J. Chem. Phys.,29, 747, 1958.CrossRefADSGoogle Scholar
  9. 9.
    J. Verhás, Z. Phys. Chem.,249, 119, 1972.Google Scholar
  10. 10.
    S. Lengyel and I. Gyarmati, Period. Polytechn. Chem. Eng.,25, 63, 1981.Google Scholar
  11. 11.
    S. Lengyel and I. Gyarmati, J. Chem. Phys.,75, 2384, 1981.CrossRefADSGoogle Scholar
  12. 12.
    S. Lengyel and I. Gyarmati, Kémiai Közlemények,55, 311, 1981, (in Hungarian).Google Scholar
  13. 13.
    P. Singh, The application of the Governing Principle of Dissipative Processes to Thermo-Hydrodynamical Stability, Dissertation, Budapest, 1973.Google Scholar
  14. 14.
    J. Verhás, J. Non-Equilib. Thermodyn.,8, 201, 1983.Google Scholar
  15. 15.
    J. Verhás, Acta Mechanica,53, 125, 1984.MATHCrossRefGoogle Scholar
  16. 16.
    B. Nyiri, Acta Phys. Hung.,63, 13, 1988.Google Scholar
  17. 17.
    R. Courant, D. Hilbert: Methods of Mathematical Physics, Intersci. Publ. Inc., New York: 1953.Google Scholar
  18. 18.
    W. Rudin, Principles of Mathematical Analysis, McGraw-Hill Inc. New York, 1964, (Hungarian translation: Müszaki Könyvkiadó, Budapest, 1978.)MATHGoogle Scholar

Copyright information

© Akadémiai Kiadó 1989

Authors and Affiliations

  • B. Nyíri
    • 1
    • 2
  1. 1.Institute of PhysicsTechnical UniversityBudapestHungary
  2. 2.Light Source Development Dept.Tungsram Co. Ltd.BudapestHungary

Personalised recommendations